

# Kommunale Wärmeplanung Besigheim

im Auftrag der Stadt Besigheim



# Abschlussbericht

Projektleitung: M.Sc. Tobias Nusser

Bearbeitung: B.Eng. Sven Dietterle, M.Sc. Shubham Sharma

Stand: 08.07.2024

**EGS-plan** Ingenieurgesellschaft für Energie-, Gebäude- und Solartechnik mbH Gropiusplatz 10 . D-70563 Stuttgart
Tel. +49 711 99 007 - 5 . Fax +49 711 99 007 - 99
info@egs-plan.de . www.egs-plan.de

IBAN-Nr. DE48 2505 0000 0002 0740 60 . BIC: NOLADE 2HXXX Ust.-IdNr. DE218431901 . Registergericht Stuttgart HRB 22434

Geschäftsführung: Dipl.-Ing. Jörg Baumgärtner Dipl.-Ing. (FH) Joachim Böwe Dr.-Ing. Boris Mahler

Generalbevollmächtigter: Univ. Prof. Dr.-Ing. M. Norbert Fisch 240710 KWP Besigheim Bericht E23365.docx

Projekt-Name: KWP Besigheim



Auftraggeber / Bauherr Stadt Besigheim

Auftragnehmer EGS-Plan Ingenieurgesellschaft für

Energie-, Gebäude- und Solartechnik mbH

Gropiusplatz 10 70563 Stuttgart

Tel. +49 711 99 007 - 5 Fax +49 711 99 007 - 99

www.egs-plan.de info@egs-plan.de

**Projektleitung** M.Sc. Tobias Nusser

Bearbeitung B.Eng. Sven Dietterle, M.Sc. Shubham Sharma

"Finanziert aus Landesmitteln, die der Landtag Baden-Württemberg beschlossen hat."





Projekt-Nr.: Projekt-Name: E23365

KWP Besigheim

# Inhalt

| 1 | Zusam   | menfassung                                            | 6  |
|---|---------|-------------------------------------------------------|----|
| 2 | Komm    | unale Wärmeplanung                                    | 9  |
|   | 2.1     | Das Planungsinstrument der kommunalen Wärmeplanung    | 9  |
|   | 2.2     | orgehensweise und Methodik                            | 9  |
|   | 2.3     | Organisatorischer Rahmen                              | 11 |
| 3 | Beteili | gungs- und Kommunikationskonzept                      | 13 |
| 4 | Bestar  | ndsanalyse                                            | 15 |
|   | 4.1 2   | Ziele und Vorgehensweise                              | 15 |
|   | 4.2     | Datengrundlagen                                       | 15 |
|   | 4.2.1   | Daten der Kommunalverwaltung                          | 16 |
|   | 4.2.2   | Daten der Schornsteinfeger                            | 16 |
|   | 4.2.3   | Daten der Energieunternehmen                          | 17 |
|   | 4.2.4   | Großverbraucher                                       | 17 |
|   | 4.3 E   | Ergebnisse der Bestandsanalyse                        | 18 |
|   | 4.3.1   | Definition der Cluster                                | 18 |
|   | 4.3.2   | Kommunalstruktur                                      | 19 |
|   | 4.3.3   | Energieinfrastruktur                                  | 22 |
|   | 4.3.4   | Wärmebedarf                                           | 23 |
|   | 4.3.5   | Endenergie- und Treibhausgasbilanz                    | 25 |
|   | 4.3.6   | Großverbraucheranalyse                                | 28 |
|   | 4.4 A   | Analyse von Eignungsgebieten                          | 28 |
|   | 4.4.1   | Eignung für eine Versorgung durch ein Wärmenetz       | 28 |
|   | 4.4.2   | Eignung für eine Versorgung durch ein Wasserstoffnetz | 30 |
| 5 | Potenz  | zialanalyse                                           | 31 |
|   | 5.1 2   | Ziele und Vorgehensweise                              | 31 |
|   | 5.2 F   | Potenziale zur Reduktion des Wärmebedarfs             | 31 |
|   | 5.2.1   | Potenziale zur Wärmebedarfsreduktion in Gebäuden      | 31 |
|   | 5.2.2   | Potenziale durch Steigerung von Prozesseffizienzen    | 32 |
|   | 5.2.3   | Gesamtpotenzial zur Reduktion des Wärmebedarfs        | 32 |
|   | 5.3 F   | Potenziale für klimaneutrale Wärme                    | 34 |
|   | 5.3.1   | Unvermeidbare Abwärme – Industrie und Gewerbe         | 35 |
|   | 5.3.2   | Abwasser - Kanal                                      | 36 |
|   | 5.3.3   | Abwasser – Kläranlage                                 | 37 |
|   | 5.3.4   | Flusswasser                                           | 38 |
|   | 5.3.5   | Geothermie – Kollektoren zentral                      | 40 |



Projekt-Nr.: Projekt-Name: KWP Besigheim plan Geothermie – Sonden dezentral 5.3.6 44 5.3.7 Geothermie – Sonden zentral 45 5.3.8 Grundwasser 46 5.3.9 Seewasser 48 5.3.10 Solarthermie - dezentral 49 5.3.11 Solarthermie - zentral 50 5.3.12 Tiefengeothermie 53 5.3.13 Ortsunabhängige Nutzungspotenziale für klimaneutrale Wärme 56 5.3.14 Potenzial für Wärme aus Kraft-Wärme-Kopplung 58 5.4 Potenziale für erneuerbare Stromerzeugung 59 5.4.1 Photovoltaik – dezentral 60 Photovoltaik - zentral 5.4.2 61 5.4.3 Windkraft 64 5.4.4 Wasserkraft 65 5.5 Übersicht der Potenzialanalyse-Ergebnisse 67 Zielszenario 69 6.1 Ziele und Vorgehensweise 69 6.2 72 Maßgebliches Zielszenario 2040 6.3 Zielszenario 2030 75 6.4 Kostenschätzung für maßgebliches Zielszenario 2040 77 7 Wärmewendestrategie & Maßnahmenkatalog 78 7.1 Ziele und Vorgehensweise 78 7.2 Maßnahmen auf Meta-Ebene 78 7.3 Priorisierte kommunale Gebiete für die Wärmetransformation 82 7.3.1 Prüfgebiete Wärme 82 87 7.3.2 Kommunale Fokusgebiete 7.3.3 Gebiete mit perspektivischem Gasbedarf 89 7.4 Clustersteckbriefe 91 7.5 Fünf Maßnahmen gemäß Klimaschutzgesetz 93 7.5.1 Stromnetzcheck – Analyse zur Erfüllung zukünftiger Stromnetz-Anforderungen 94 7.5.2 Konzept zur Erschließung des Potenzials durch Sanierung und Effizienzsteigerung 96 7.5.3 Konzept zur Flächensicherung für Energieinfrastrukturen 98 7.5.4 BEW- Machbarkeitsstudie Wärmenetz Ottmarsheim 101 7.5.5 BEW- Machbarkeitsstudie Wärmenetz Burgacker 104

Dokumentation erweiterter Maßnahmenvorschläge

7.5.6

F23365

107

Ingenieure aus Leidenschaft



Projekt-Nr.: Projekt-Name:

E23365

KWP Besigheim

| 8 Abl  | oildungsverzeichnis                              | 110 |
|--------|--------------------------------------------------|-----|
| 9 Lite | raturverzeichnis                                 | 112 |
| 10 Anl | nang                                             | 113 |
| 10.1   | Liste der Ausschluss- und Eignungsflächen        | 113 |
| 10.2   | Emissionsfaktoren in der kommunalen Wärmeplanung | 114 |

Projekt-Name: KWP Besigheim



# 1 Zusammenfassung

Das Wärmeplanungsgesetz (WPG) verpflichtet alle Kommunen zur Erstellung einer kommunalen Wärmeplanung bis Mitte 2028. Die kommunale Wärmeplanung soll dabei als strategisches Planungsinstrument Erkenntnisse liefern, wie eine klimaneutrale Wärmeversorgung bis spätestens 2040 erreicht werden kann. Die Stadt Besigheim hat im Jahr 2023 die Erarbeitung der Wärmeplanung begonnen und analysiert darin die Möglichkeiten einer klimaneutralen Wärmeversorgung<sup>1</sup> für das Zieljahr 2040.

Die kommunale Wärmeplanung weist grundlegend vier zentrale Arbeitsphasen auf: Bestandsanalyse, Potenzialanalyse, Zielszenario und Maßnahmenkatalog.

## Bestandsanalyse

Die Bestandsanalyse hat das Ziel, den aktuellen Wärmebedarf und -verbrauch und die daraus resultierenden Treibhausgas-Emissionen (THG) für die gesamte Kommune zu bestimmen. Durch die Datenerhebungsermächtigung im Klimaschutzgesetz liegen hierfür reale Daten zum Energieverbrauch als auch Informationen zu den vorhandenen Gebäudetypen, der Versorgungsstruktur aus Gas- und Wärmenetzen, Heizzentralen sowie der dezentralen Wärmeversorgungsstruktur der Wohn- und Nicht-Wohngebäude vor.

Im Rahmen der Bestandsanalyse ist die Kommune in 45 Cluster eingeteilt worden, um auf dieser Ebene jeweils passende Lösungsansätze zu ermitteln und die Ergebnisse datenschutzkonform weiternutzen zu können. Insgesamt sind im Rahmen der Analyse rund 6.600 Gebäude mit mehr als 1,6 Mio. m² Brutto-Grundfläche ausgewertet worden. Davon weisen 3.238 Gebäude (1,2 Mio. m² Brutto-Grundfläche) einen Wärmebedarf auf.

Der Endenergiebedarf für Wärme lag im Jahr 2022 bei ca. 152 GWh. Der größte Anteil des Wärmebedarfs wird heute durch fossile Energieträger Erdgas und Heizöl (rund 83 %) gedeckt. Rund 55 % des Endenergiebedarfs sind dabei auf die Nutzungskategorie Wohnen zurückzuführen. Der Anteil der dezentralen erneuerbaren Energien liegt bei ca. 11 %.

Insgesamt resultieren im Basisjahr THG-Emissionen in Höhe von 35.721 Tonnen CO<sub>2</sub>-Äquivalente. Bezogen auf die Einwohnerzahl ergibt sich ein Emissions-Kennwert von rund 2,8 t pro Einwohner für den Sektor Wärme.

# Potenzialanalyse

Die Potenzialanalyse beinhaltet die Ermittlung der Potenziale zur Energieeinsparung durch Gebäudesanierungen und Effizienzmaßnahmen im Bereich der Prozesswärme sowie die Erhebung der lokal nutzbaren Potenziale klimaneutraler Energiequellen und Abwärme. Das Leitszenario zur Ermittlung der Einsparpotenziale zeigt auf, dass durch die Verbesserung des Wärmeschutzes von Gebäuden ca. 18 % des Gesamtwärmebedarfs eingespart werden kann. Dabei ist eine Sanierungsrate von 2 % pro Jahr angenommen sowie ein Sanierungsniveau, das dem heutigen gesetzlichen Mindeststandard entspricht. Durch Prozesseffizienzmaßnahmen in Industrie und Gewerbe resultiert in dem Szenario eine

<sup>1</sup> Siehe Erläuterung hierzu in Kapitel 2.2 "Exkurs: Definition klimaneutrale Wärme"

\_

Projekt-Name: KWP Besigheim



Wärmebedarfsreduktion um ca. 8 % bis 2040. Zusätzliche Wärmebedarfe werden voraussichtlich durch neue Wohnquartiere entstehen und sind entsprechend im Wärmebedarf für das Zieljahr berücksichtigt. Gegenüber dem Basisjahr 2022 resultiert für das Zielszenario insgesamt ein um rund 22 % reduzierter Wärmebedarf.

Die Analyse der lokal verfügbaren emissionsfreien Wärmequellen ergibt, dass die größten Potenziale im Bereich der Erdwärme, Flusswasserwärme und Solarthermie liegen. Neben den räumlich zugeordneten Potenzialen sind für eine vollständige Bedarfsdeckung die Nutzung von im Wesentlichen räumlich unabhängigen Energieträgern wie Außenluftwärme, Biomasse und "grüne Gase" erforderlich.

## Zielszenario 2040

Für die kommunale Wärmeplanung gibt das Klimaschutzgesetz das Ziel einer klimaneutralen Wärmeversorgung vor. Gemäß Gesetzesbegründung bedeutet dies, dass durch die Wärmeversorgung im Zieljahr nur noch Wärme auf Basis von erneuerbaren Energien oder Abwärme zum Einsatz kommen darf. Auf Basis der Erkenntnisse aus der Bestands- und Potenzialanalyse wird dieses "Zielszenario" ausgearbeitet, das aufzeigen soll, mit welchen Energieträgern und Versorgungssystemen eine klimaneutrale Wärmeversorgung erreicht werden kann.

Der Endenergiebedarf für Wärme in Besigheim beträgt im Zieljahr 2040 rund 118 GWh, dieser Bedarf ist durch klimaneutrale Wärmequellen zu decken. Ausgehend von rund 83 % fossiler Endenergie im Basisjahr zeigt dies die Dimension des fortzuführenden Transformationsprozesses.

Zentrales Element der Wärmeerzeugung sind im Zielszenario die Wärmepumpen in Heizzentralen und Gebäuden. Wärmepumpen stellen hierbei rund zwei Drittel der Wärme im Zielszenario. Wesentliche Umweltwärmequellen sind Außenluft, Geothermie und Flusswasserwärme und Abwasserwärme.

Im Rahmen des Zielszenario-Prozesses sind auf der Ebene von 45 Clustern räumlich zugeordnete Empfehlungen in den Cluster-Steckbriefen ausgearbeitet, die Aufschluss darüber geben, welche Energieversorgungssysteme (Wärmenetze, dezentrale Heizungsanlagen) und Energieträger für die Erreichung der Klimaneutralitätsziele eine Option darstellen.

# Handlungsstrategie/Maßnahmenkatalog

Auf Basis der Ergebnisse des Zielszenarios sind Handlungsstrategien und ein Katalog mit fünf Maßnahmen erarbeitet worden, deren verpflichtende Umsetzung laut Klimaschutzgesetz in den nächsten fünf Jahren begonnen werden soll. Darüber hinaus sind grundlegende strukturelle und unterstützende Maßnahmen bei der Kommunalverwaltung für die Umsetzung dieses Transformationsprozesses ausformuliert.

Projekt-Name: KWP Besigheim





Die fünf Maßnahmen sind in Abstimmung mit der Kommunalverwaltung und der Energieagentur des Landkreis Ludwigsburg (LEA) entwickelt und ausführlich in Steckbriefen in Kapitel 7.5 beschrieben. Hierbei handelt es sich um folgende Maßnahmen.

- 1. Stromnetzcheck Ist das Stromnetz bereit für den Ausbau der Wärmepumpen?
- 2. Erschließung Sanierungspotenzial Erstellung eines Konzeptes zur Verbesserung der Gebäudehülle und der Prozesseffizienz in Industrie
- 3. Flächensicherung für Energieinfrastrukturen Identifizierung und Sicherung der Freiflächen zur Energiegewinnung
- 4. BEW-Studie Wärmenetz Ottmarsheim Machbarkeitsstudie zur Wärmenetzplanung für Wärmenutzung aus oberflächennaher Geothermie und Außenluft
- 5. BEW-Studie Wärmenetz Burgacker Machbarkeitsstudie zur Wärmenetzplanung für Wärmenutzung aus Abwasser, Flusswasser und Außenluft

Projekt-Name: KWP Besigheim



# 2 Kommunale Wärmeplanung

# 2.1 Das Planungsinstrument der kommunalen Wärmeplanung

Die kommunale Wärmeplanung ist ein strategisches Planungswerkzeug, um das Handlungsfeld Wärme innerhalb der nachhaltigen Stadtentwicklung gestalten zu können. Die Kommunen entwickeln dabei eine Strategie zum langfristigen Umbau der Wärmeversorgung hin zur Klimaneutralität, die die jeweilige Situation vor Ort bestmöglich berücksichtigt. Sie enthält eine Analyse des Wärmebedarfs vor Ort und Maßnahmen, wie dieser mit erneuerbaren und emissionsfreien Energien perspektivisch gedeckt werden kann.

Durch die Wärmeplanung verfügen Kommunen über einen starken Hebel, um die Wärmewende sowohl schneller als auch effizienter voranzutreiben. Der ganzheitlich und konsequent auf die Klimaneutralität ausgerichtete Ansatz eröffnet der Verwaltung und kommunalen Entscheidungsebene einen strategischen Fahrplan, der ihre Arbeit in den Folgejahren Orientierung geben kann. Ein Wärmeplan ersetzt dabei niemals eine ortsgenaue Planung eines Wärmenetzes oder detailliertere Betrachtungen in einem Quartier.

"Umfang, Inhalt und mit der kommunalen Wärmeplanung verbundene Befugnisse werden im Klimaschutzgesetz für alle Kommunen geregelt - unabhängig von Einwohnerzahl und Status. Die großen Kreisstädte und Stadtkreise sind durch das Klimaschutzgesetz Baden-Württemberg zur Erstellung eines kommunalen Wärmeplans verpflichtet (siehe § 27 Nr.3). Die übrigen Kommunen werden ab Oktober 2021 durch ein Förderprogramm bei dieser wichtigen Aufgabe finanziell unterstützt." (KEA-BW, KEA-BW Die Landesenergieagentur, 2023)

## 2.2 Vorgehensweise und Methodik

Die Kommunale Wärmeplanung besteht im Kern aus vier Arbeitsphasen: Bestandsanalyse, Potenzialanalyse, Zielszenario und Maßnahmenkatalog.

#### **Bestandsanalyse**

Im Rahmen der Bestandsanalyse werden Daten zur Gebäude-, Siedlungs- und Energieinfrastruktur erhoben und analysiert. Das digitale Liegenschaftskataster liefert Informationen zur Nutzungsart und Kubatur der Gebäude, den Flurstücken und Straßen. Im Anschluss wird der aktuelle Wärmebedarf/-verbrauch erhoben und die daraus resultierenden Treibhausgas-Emissionen ermittelt. Zusätzlich werden Informationen zur Energieinfrastruktur, wie z.B. Gas- und Wärmenetze, zur dezentralen Wärmeerzeugung in Gebäuden und zum Gebäudebestand allgemein analysiert.

Die Grundlagen für die Bestandsanalyse sind gebäudescharfe Schornsteinfegerdaten, Verbrauchsdaten für leitungsgebundene Energieträger (Gas, Strom, Wärme), das digitale Liegenschaftskataster. Ergänzend fließen lokale Informationen zu Bebauungsplänen, kommunalen Gebäuden und denkmalgeschützten Gebäuden mit ein. (siehe Kapitel 4.2)

Projekt-Name: KWP Besigheim



## Potenzialanalyse

Die Potenzialanalyse dient der Berechnung der Potenziale zur Energieeinsparung für Raumwärme, Warmwasser und Prozesswärme in den Sektoren Haushalte, Gewerbe-Handel-Dienstleistungen, Industrie und öffentlichen Liegenschaften sowie der lokal verfügbaren Potenziale erneuerbarer Energien und Abwärme.

#### Zielszenario

Das Zielszenario steht für die Entwicklung eines Szenarios zur Deckung des zukünftigen Wärmebedarfs mit erneuerbaren Energien zur Erreichung einer klimaneutralen Wärmeversorgung. Dazu gehört eine räumlich aufgelöste Beschreibung der dafür benötigten zukünftigen Versorgungsstruktur im Jahr 2040 mit einem Zwischenziel für 2030. Dies erfolgt durch die Ausweisung von Eignungsgebieten für zentral und dezentral versorgte Gebiete.

# Handlungsstrategie und Maßnahmenkatalog

Der Prozess der kommunalen Wärmeplanung führt Potenziale und Bedarf systematisch zusammen. Auf diese Weise lassen sich Einsatzmöglichkeiten der Energiequellen in einem klimaneutralen Wärmesystem definieren und lokal umsetzen. Aufbauend auf dem Zielszenario werden sowohl grundlegende als auch konkrete Maßnahmen und Strategien formuliert, die für die erfolgreiche Umsetzung dieses Transformationsprozesses empfohlen werden.

Die Maßnahmen beziehen sich spezifisch auf unterschiedliche Eignungsgebiete und Quartiere sowie auf strukturelle und prozesshafte Aspekte auf Seiten der Kommunalverwaltung. Gemäß dem Klimaschutzgesetz sind fünf prioritäre Maßnahmen zur Umsetzung in den nächsten fünf Jahren möglichst detailliert zu beschreiben. Die Summe der beschriebenen Maßnahmen soll helfen, die erforderlichen Treibhausgasminderungen für eine klimaneutrale Wärmeversorgung zu erreichen.

Der kommunale Wärmeplan soll in der anschließenden Umsetzungsphase Orientierung geben. Seine Ergebnisse und Handlungsvorschläge dienen der Verwaltung und dem Gemeinderat als Grundlage für die weitere Stadt- und Energieplanung. Während des gesamten Prozesses gilt es, die Inhalte anderer Vorhaben der Kommune, etwa die der Bauleit- oder Regionalplanung, zu berücksichtigen.



Abbildung 1: Übersicht der Arbeitsphasen einer KWP

Projekt-Name: KWP Besigheim



## Exkurs: Definition klimaneutrale Wärmeversorgung

Gemäß der Gesetzesbegründung zum Klimaschutzgesetz Baden-Württemberg vom Mai 2020 ist ein Zielszenario für eine klimaneutrale Wärmeversorgung zu entwickeln. "... Dabei ist als klimaneutral eine Wärmeversorgung zu verstehen, die den möglichst reduzierten Energiebedarf ohne Verursachung von Treibhausgasemissionen deckt. Auf Ebene der Kommune bestehen dabei überörtliche Abhängigkeiten von klimaneutralem Strom und eventuell auch in angemessenem Umfang sonstigen klimaneutralen Energieträgern ("grünes Gas"), die nicht unbedingt im Gemeindegebiet hergestellt werden können. Die Orientierung an den Klimaschutzzielen und -vorgaben von Bund und Land gewährleistet, dass diese klimaneutralen Versorgungsmöglichkeiten nur in angemessenem Umfang in die örtliche Planung eingestellt werden."

Die in Tabelle 14 aufgeführten Emissionsfaktoren zeigen auf, dass auch im Zieljahr erneuerbare Wärme emissionsbehaftet sein kann. Die aus dem Technikkatalog angelehnten Emissionsfaktoren verdeutlichen dabei die in der Gesetzesbegründung erwähnten überörtlichen Abhängigkeiten und den Sachverhalt, dass gemäß diesen Emissionsszenarien auch bei "Wärme aus erneuerbaren Energien" Treibhausgasemissionen resultieren.

Dies greift auch das seit Januar 2024 in Kraft getretene "Gesetz für die Wärmeplanung und zur Dekarbonisierung der Wärmenetze" (WPG) auf. Dort ist zur Erfüllung einer klimaneutralen Wärmeversorgung im Zielszenario gemäß § 19 Abs. 1 WPG "... eine Wärmeversorgung ausschließlich auf Grundlage von Wärme aus erneuerbaren Energien oder aus unvermeidbarer Abwärme innerhalb des beplanten Gebiets ..." auszuarbeiten. Der Gesetzgeber definiert dabei keine Emissionsvorgaben, sondern lediglich für die Erfüllung als geeignet eingestufte Energieträger.

Die Darstellung des Zielszenarios bezieht sich im Fachgutachten aus diesem Grund im Wesentlichen auf die darin eingesetzten Energieträger und Versorgungssysteme.

# 2.3 Organisatorischer Rahmen

Das Wärmeplanungsgesetz verpflichtet Kommunen in Deutschland bis spätestens Juni 2028 eine kommunale Wärmeplanung zu erstellen und alle fünf Jahre bezüglich künftiger Entwicklungen zu überprüfen. Die kommunale Wärmeplanung ist für Kommunen der zentrale strategische Prozess, um Maßnahmen für das Erreichen der Klimaschutzziele im Wärmebereich zu identifizieren. Dabei folgt sie dem Leitspruch: Energiewende durch Wärmewende. Für die kommunale Wärmeplanung gibt das Klimaschutzgesetz in Baden-Württemberg das Ziel einer klimaneutralen Wärmeversorgung bis 2040 vor. Gemäß Gesetzesbegründung bedeutet dies, dass durch die Wärmeversorgung spätestens im Jahr 2040 keine Treibhausgas-Emissionen mehr verursacht werden dürfen. [Im Internet unter: <a href="https://www.kea-bw.de/waermewende/wissensportal/27-kommunale-waermeplanung">https://www.kea-bw.de/waermewende/wissensportal/27-kommunale-waermeplanung</a>

Die Ergebnisse der kommunalen Wärmeplanung werden an zentraler Stelle durch die Regierungspräsidien dokumentiert. In regelmäßigen Abständen muss die kommunale Wärmeplanung auch in Baden-Württemberg fortgeschrieben werden. Damit wird gewährleistet, dass die Ergebnisse geprüft und die Umsetzung weiter vorangetrieben werden.

Projekt-Name: KWP Besigheim



Die Kommunen erhalten vorrausichtlich hierfür zukünftig zur Durchführung der kommunalen Wärmeplanung Konnexitätszahlungen.

Besigheim hat rund 13.000 Einwohner und ist damit eine Kleinstadt im Landkreis Ludwigsburg. Sie gehört zur Region Stuttgart und geografisch gesehen liegt sie ca. 13 km nördlich von Ludwigsburg am Zulauf der Enz in den Neckar. Besigheim besteht aus der Kernstadt Besigheim und der Gemeinde Ottmarsheim, welche 1971 eingemeindet wurde und nordöstlich von der Kernstadt liegt.

Die Altstadt liegt auf dem lang gestreckten, steil abfallenden Mündungssporn und ist so auf drei Seiten von den beiden Flüssen umgeben. Das mittelalterliche Besigheim ist seit 2005 ein staatlich anerkannter Erholungsort. Die Stadt ist von Weinbau geprägt und ist einer der schönsten Weinorte in Deutschland.

Die kommunale Wärmeplanung ist in der Stadtverwaltung beim Fachbereich "Stadtentwicklung und Bauverwaltung" angesiedelt. Hier wird u.a. an dem Thema Klimaschutz gearbeitet.

Projekt-Name: KWP Besigheim



# 3 Beteiligungs- und Kommunikationskonzept

Für den Erfolg und die Akzeptanz einer kommunalen Wärmeplanung bedarf es einer aktiven Beteiligung und Information der lokalen Akteure und der Öffentlichkeit. Zu Beginn sind daher im Rahmen einer Akteursanalyse die wesentlichen Akteure identifiziert und deren Erwartungen an die KWP erfasst worden. Darauf aufbauend wurde ein Kommunikationskonzept frühzeitig entwickelt, um eine Mitwirkung und zielgruppenspezifische Einbindung der lokalen Akteure zu erreichen.

Bei der Akteursanalyse sind zunächst alle relevanten Akteure in Gruppen eingeteilt und für diese ein Beteiligungs- und Kommunikationskonzept erstellt worden. Die identifizierten Akteursgruppen sind in Tabelle 1 aufgelistet. In der Liste ist zusätzlich aufgeführt, ob für die Akteursgruppe eine informative oder partizipative Beteiligung angesetzt wurde. In Abhängigkeit von den Gruppen und Kommunikationsformaten sind mit der Kommunalverwaltung entsprechende Beteiligungsformate festgelegt worden.

Tabelle 1: Akteursgruppen

|    | Gruppe                             |              |
|----|------------------------------------|--------------|
| A1 | Gemeinderat                        | informativ   |
| A2 | Verwaltung                         | partizipativ |
| А3 | Energieunternehmen                 | partizipativ |
| A4 | Handwerker, Schornsteinfeger       | informativ   |
| A5 | Großverbraucher                    | partizipativ |
| A6 | Immobilienbestandshalter           | informativ   |
| A7 | Landwirtschaft                     | informativ   |
| A8 | Öffentlichkeit                     | informativ   |
| A9 | Ludwigsburger Energieagentur (LEA) | partizipativ |

# **Partizipative Beteiligung**

Der partizipative Beteiligungsprozess hat das Ziel, mit den an der späteren Umsetzung zuständigen Akteuren akzeptierte Ergebnisse und Maßnahmen zu finden. Dazu zählen konkret die Stadtverwaltung die Energieunternehmen und Netzbetreiber (z.B. Netze BW), als auch die Energieagentur des Landkreises Ludwigsburg (LEA).

Das zentrale Format für die Kommunikation waren hierbei regelmäßig stattgefundene Besprechungstermine mit der Stadtverwaltung (Stadtentwicklung und Bauverwaltung) und der LEA. Hier wurden je nach Projektphase wöchentlich bis monatlich die Zwischenstände vorgestellt und aktuelle Projektthemen diskutiert.

Zum Kommunikations- und Partizipationskonzept gehörte, je Projektphase die jeweils relevanten Akteure in die regelmäßigen JF-Termine einzubeziehen. Da die Stadt Besigheim keine eigenen Stadtwerke für Energiedienstleistungen betreibt, tritt die Netze-BW als lokales

Projekt-Name: KWP Besigheim



Energieunternehmen auf. In dieser Form wurde das Unternehmen frühzeitig und fortlaufend zu Terminen hinzugezogen und über Arbeitsstände informiert.

# **Informative Beteiligung**

Die Öffentlichkeit wurde zu Beginn im Rahmen einer öffentlichen Bekanntmachung auf der Stadteigenen Homepage über den Start und die Inhalte der kommunalen Wärmeplanung informiert. Darüber hinaus wurde der Zwischenstand der Kommunalen Wärmeplanung vor Festlegung der Maßnahmen am 13.06.2024 im Rahmen einer Informationsveranstaltung der Öffentlichkeit präsentiert. An Thementischen gab es die Möglichkeiten für Rückmeldungen zur KWP sowie für Diskussionen des anstehenden Transformationsprozesses und Kontaktaufnahme zu lokalen Akteuren (Energieberater, Stadtverwaltung). Auf der Webseite der Kommune wurde fortlaufend zur Erstellung der kommunalen Wärmeplanung informiert und Kontaktdaten für Fragen und Rückmeldungen benannt.

Neben der Information der Öffentlichkeit kommt der Information des Gemeinderats und der relevanten kommunalpolitischen Gremien und Ausschüssen eine zentrale Rolle zu. Die erste Information fand am 12.12.2023 im Gemeinderat statt, dabei waren zahlreiche Bürger:innen mit anwesend, da die Auftaktinformation im Gemeinderat an eine Einwohnerfragestunde angeschlossen war.

Am 07.05.2024 wurden die Ergebnisse des Zielszenarios und der Ausblick auf die letzte Projektphase im Gemeinderat vorgestellt. Ziel der Vorstellungen war es erneut über die Relevanz der kommunalen Wärmeplanung und den aktuellen Stand zu informieren sowie das weitere Vorgehen zu erläutern. Dadurch konnten regelmäßig Fragen und Anmerkungen aus der Kommunalpolitik abgeholt und in die weitere Bearbeitung integriert werden.

Die finale Präsentation im Gemeinderat findet am 23.07.2024 statt wo auch der Beschluss der Maßnahmen und des Wärmeplans vorgesehen ist.

Projekt-Name: KWP Besigheim



# 4 Bestandsanalyse

# 4.1 Ziele und Vorgehensweise

Die Bestandsanalyse basiert auf der Erhebung von Informationen zu den vorhandenen Gebäudetypologien, der Versorgungsstrukturen von Gas- und Wärmenetzen, Heizzentralen und Speichern sowie der Ermittlung der Wärmeversorgungsstruktur in den Wohn- und Nicht-Wohngebäuden. Darauf aufbauend werden der Wärmebedarf und -verbrauch sowie die daraus resultierenden THG-Emissionen im Bereich Wärme bestimmt.

In den folgenden Abschnitten werden die grundlegend erhobenen Daten und die Datenherkunft näher beschrieben. Exemplarisch wird jeweils aufgezeigt, wie Analysen für die weitere Nutzung der Daten in der KWP eingesetzt werden.

Ein wesentliches Ziel der Bestandsanalyse ist die Ermittlung des Energiebedarfs und der THG-Emissionen, die auf den Wärmesektor zurückzuführen sind. Mit diesen Ergebnissen kann eine erste verursacherorientierte und räumliche Zuordnung der Bedarfe und Umweltwirkungen in der Kommune vorgenommen werden. Für die anschließende Potenzialanalyse stellen diese Ergebnisse die wesentliche Grundlage dar, um Abschätzungen des zukünftigen Wärmebedarfs und der potenziellen Wärmedeckungsanteile ableiten zu können.

Die Aufbereitung und Bearbeitung der Daten erfolgt mit Hilfe des Open-Source-Geographischen-Informationssystems QGIS.

Neben den nachfolgend aufbereiteten Ergebnissen der Bestandsanalyse sind im Anhang 10 weitere Kennzahlen und Abgabebestandteile gemäß des Leistungsverzeichnisses der KEA-BW dokumentiert.

# 4.2 Datengrundlagen

Um eine hohe Qualität der kommunalen Wärmeplanung zu gewährleisten, werden mit dem Klimaschutzgesetz die Kommunen zur Datenerhebung relevanter Daten ermächtigt. Gemäß § 33 des Klimaschutzgesetzes Baden-Württemberg sind alle Kommunen "... zum Zweck der Erstellung eines kommunalen Wärmeplans ermächtigt, gebäudescharfe Daten bei Energieunternehmen und Bezirksschornsteinfegermeistern zu beschaffen." (KEA-BW, KEA-BW die Landesenergieagentur, 2023) Darüber hinaus können auch Daten von Gewerbe- und Industriebetrieben im Rahmen der KWP erhoben werden. Diese Daten dürfen lediglich zum Zweck der Erstellung einer kommunalen Wärmeplanung verwendet werden.

Eine weitere Datenquelle sind verwaltungsinterne Informationen, Karten und Fachplanungen, die von den jeweiligen Fachbereichen und Ämtern bereitgestellt werden. Im Folgenden sind die Datengrundlagen bezüglich Herkunft und Inhalt erläutert.

Projekt-Name: KWP Besigheim



## 4.2.1 Daten der Kommunalverwaltung

Allgemeine Daten der Kommunalverwaltung werden zu Beginn der Bearbeitung von den jeweiligen Fachbereichen und Ämtern angefordert. Wesentlicher Baustein ist das digitale Liegenschaftskataster als auch weitere Fachplanungen. Das digitale Liegenschaftskataster beinhaltet beispielsweise Gebäudeinformationen wie die Gebäudegrundfläche, die Gebäudefunktion und die Lagebezeichnung mit Adresse sowie weiteren Angaben zu Flurstücken und Flächennutzungen auf dem Kommunalgebiet.

Ergänzend werden bei der Kommunalverwaltung folgende Informationen abgefragt:

- Bebauungspläne
- Energiebericht kommunale Liegenschaften
- Erarbeitete Quartierskonzepte
- Geplante Neubaugebiete
- Kommunale Energie- und Klimaschutzkonzepte
- Liste denkmalgeschützter Gebäude
- Liste kommunaler Liegenschaften

# 4.2.2 Daten der Schornsteinfeger

Wichtige Daten im Bereich der Heizungsanlagen in Gebäuden werden grundsätzlich schon von den Bezirksschornsteinfegern erfasst, verarbeitet und dokumentiert. Aus diesem Grunde ermächtigt das Klimaschutzgesetz Kommunen zur Abfrage der Daten aus den einzelnen Kehrbezirken von den Schornsteinfegern. Der Landesinnungsverband der Schornsteinfeger hat zusammen mit Softwareanbietern für den automatisierten Export der benötigten Daten eine Ausgabefunktion implementiert und unterstützt damit maßgeblich die Erstellung der KWP. Dies ermöglicht den einfachen Datenexport für die Weiternutzung in den Analysetools der Dienstleister.

Folgende Angaben und Daten werden unter anderem für die kommunale Wärmeplanung von den Bezirksschornsteinfegern bereitgestellt:

- Adresse (Kommune, Straße und Hausnummer)
- Feuerstättenart
- Feuerstättennummer
- Brennstoff
- Nennwärmeleistung
- Baujahr
- Heizwert/ Brennwert
- Art der Heizung: Zentralheizung/ Einzelraumheizung

Projekt-Name: KWP Besigheim



# 4.2.3 Daten der Energieunternehmen

Die Ermittlung des kommunalen Energiebedarfs im Bereich Wärme kann über Bedarfskennzahlen oder über die Erfassung von Verbrauchsdaten geschehen. Verbrauchsdaten haben den Vorteil, dass diese der Realität entsprechen und die konkreten Nutzungsanforderungen dadurch besser wiedergegeben werden als bei pauschalen Bedarfskennzahlen. Den Energieunternehmen liegen für leitungsgebundene Energieträger die gebäudescharfen Verbrauchsdaten im Bereich Strom (Heizstrom, Wärmepumpenstrom), Wärme (Wärmeabsatz über Wärmenetze) und Gas vor. Für eine qualitativ hochwertige und belastbare Bedarfsanalyse ist im § 27 Nr. 3 des Klimaschutzgesetzes Baden-Württemberg die Kommune zur Erhebung der erforderlichen Daten bei den Energieunternehmen ermächtigt.

Neben den Verbrauchsdaten können Energieunternehmen als Betreiber von Energienetzen und Erzeugungsanlagen weitere relevante Informationen zur vorliegenden Infrastruktur in der Kommune liefern. Speziell für größere Wärmenetze ist die Information über die verbaute Technik in den Heizzentralen von großer Bedeutung, um konkrete Transformationspotenziale bewerten zu können.

Folgende Daten umfassen aktuell die Abfrage und Übermittlung:

- Energieanlagen und -infrastrukturen
  - Energienetze
    - Abwassernetz
    - Gasnetz
    - Wärmenetze
  - Installierte KWK-Leistung
  - Installierte elektrische Speicherkapazität
  - Installierte thermische Speicherkapazität
  - PV-Anlagen (Anzahl und Leistung)
  - Wärmezentralen inklusive Angaben zu Temperaturniveaus und Art der Wärmeerzeugung, Leistung der Erzeuger und Netzabnahme, Wärmemenge
- Verbrauchsdaten
  - Gasverbrauch
  - Wärmeverbrauch (an Wärmenetzen)
  - Wärmestromverbrauch aufgeschlüsselt in Direktstrom und WP-Strom

#### 4.2.4 Großverbraucher

Im Zuge der ersten Berechnung der Wärmebedarfszahlen können Großverbraucher mit einem hohen Wärme- und Energieverbrauch identifiziert werden. Um Abwärme- und Energieeffizienzpotenziale zu erkennen, besteht für Gewerbe- und Industriebetriebe sowie die öffentliche Hand die Verpflichtung, unter anderem Angaben über Höhe und Art ihres Endenergiebedarfs, Wärmeenergiebedarfs und -verbrauchs zu machen. Hierzu werden die identifizierten Großverbraucher im Rahmen einer Befragung angeschrieben und bei Bedarf über qualifizierende Interviews detaillierter analysiert.

Projekt-Name: KWP Besigheim



## 4.3 Ergebnisse der Bestandsanalyse

Die Ergebnisse der Bestandsanalyse gelten für das gewählte Basisjahr 2022. Im Rahmen der Ergebnisvorstellung wird zunächst auf die Clusterbildung eingegangen, da Cluster eine geeignete Aggregationsebene bilden, um datenschutzkonform die Energiebedarfe und THG-Emissionen darstellen zu können. Im Anschluss werden die grundsätzliche Gemeindestruktur und die aktuellen relevanten Energieinfrastrukturen erläutert. Den Abschluss der Ergebnisdokumentation bildet die Wärme- und THG-Bilanz, die Grundlage für die weitere Bearbeitung im Rahmen der Potenzialanalyse und des Zielszenarioprozesses ist.

## 4.3.1 Definition der Cluster

Gemäß der in Kapitel 4.2 beschriebenen Datenerhebungsermächtigung werden im Rahmen der KWP zum Teil personenbezogene bzw. schützenswerte Daten auf Einzelgebäude-Ebene erhoben und verarbeitet. Für eine datenschutzkonforme Weiternutzung und Veröffentlichung werden diese Einzeldaten in Clustern (Teilgebiete) aggregiert.

Insgesamt wird die Kommune in 45 Cluster eingeteilt. Kriterien für die Abgrenzung der Cluster sind die Siedlungsstruktur, Gebäudenutzungstypen, Baualter sowie Energieträger und infrastrukturen zur Wärmeversorgung. Ziel ist es neben der Einhaltung des Datenschutzes möglichst sinnvolle homogene Versorgungsbereiche für eine potenzielle zentrale oder dezentrale Wärmeversorgung abzugrenzen. Räumliche trennende bzw. verbindende Elemente, wie Straßen, sind bei der Wahl der Clustergrenzen ebenfalls mitberücksichtigt. Die finale Auswahl der einzelnen Cluster wurde zu Beginn der Bestandsanalyse mit der Kommunalverwaltung abgestimmt.

Im Rahmen der KWP werden die Ergebnisse der Bestands- und Potenzialanalyse als auch des Zielszenarios auf Ebene der Cluster ausgewiesen und dokumentiert.

Projekt-Name: KWP Besigheim



## 4.3.2 Kommunalstruktur

Die Stadt Besigheim setzt sich aus zwei Stadtteilen (Besigheim und Ottmarsheim) zusammen, die hauptsächlich durch Wohnnutzung geprägt sind. Das gesamte Gemarkungsgebiet der Kommune umfasst eine Fläche von 1.704 ha. Darunter befinden sich 122 ha Wald sowie 619 ha Ackerland. Damit ist der Großteil der nicht bebauten Flächen der landwirtschaftlichen Nutzung zuzuordnen.

## Gebäudeinfrastruktur

Im Zuge der Bestandsanalyse werden in der Kommune insgesamt rund 6.600 Gebäude erfasst und analysiert. Die Kategorisierungen und Verteilungen der Gebäudetypen sind in Tabelle 2 aufgeführt. Den größten Anteil der Gebäude mit einem Anteil von rund 45 % an der Gebäudezahl und rund 40 % an der Fläche nehmen die Wohngebäude ein. Die Kategorie Sonstige umfasst mit 48 % der Gebäudeanzahl alle Gebäude, die nach ihrer Nutzung keinen Wärmebedarf aufweisen (Garagen, Gartenhäuser, Scheunen, etc.).

Bei einer Gesamtwohnfläche<sup>2</sup> von 565.751 m<sup>2</sup> in der Kommune resultiert eine einwohnerbezogene Wohnflächeninanspruchnahme von 43,8 m<sup>2</sup>/EW.

Tabelle 2: Gebäudestatistik

|                                    | Gebäudeanzahl | Rel. Anteil<br>in % | Fläche im m²<br>(BGF) | Rel. Anteil in<br>% |
|------------------------------------|---------------|---------------------|-----------------------|---------------------|
| Gesundheit und<br>Bäderbetriebe    | 5             | 0,1%                | 1.207                 | 0,1%                |
| Gewerbe, Handel,<br>Dienstleistung | 157           | 2,4%                | 131.180               | 8,0%                |
| Hotel                              | 1             | 0,0%                | 888                   | 0,1%                |
| Industrie                          | 136           | 2,1%                | 310.171               | 18,9%               |
| Mischnutzung                       | 81            | 1,2%                | 72.331                | 4,4%                |
| Öffentliche Verwaltung             | 40            | 0,6%                | 49.263                | 3,0%                |
| Sondernutzung                      | 100           | 1,5%                | 106.924               | 6,5%                |
| Wohnnutzung                        | 2.936         | 44,5%               | 652.484               | 39,7%               |
| Sonstige                           | 3.137         | 47,6%               | 319.169               | 19,4%               |
| Gesamt                             | 6.593         |                     | 1.643.617             |                     |

\_

<sup>&</sup>lt;sup>2</sup> Berechnet aus der BGF der Wohnnutzung in Gebäuden

Projekt-Name: KWP Besigheim



In Abbildung 2 ist die Verteilung der Baualtersklassen der Wohngebäude im Bestand in Besigheim dargestellt. Rund 90 % der Wohngebäude sind vor dem Jahr 2000 errichtet worden. Mit einem Anteil von ca. 15 % nehmen die Baualtersklassen 1980-1989 und 1990-1999 den größten Anteil ein.

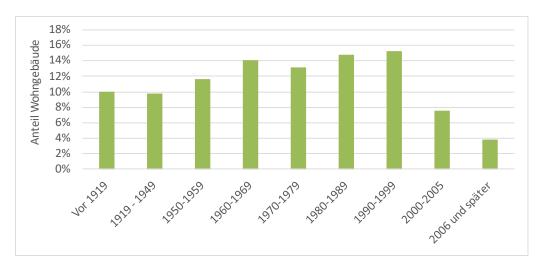



Abbildung 2 Baualtersklassen Wohngebäude im Bestand (prozentuale Verteilung)<sup>3</sup>

#### Clusterstruktur

In Tabelle 3 und Abbildung 3 sind die Hauptnutzungsarten der Cluster dargestellt. Die Hauptnutzungsarten werden auf Basis der einzelnen Gebäudenutzungen innerhalb der Cluster bestimmt. Sofern eine dominierende Nutzungsart vorliegt, entspricht diese der Hauptnutzungsart des Clusters. Falls keine eindeutige Nutzung für das Cluster identifiziert werden kann, wird dieses als "Mischnutzung" definiert. Analog zur Gebäudestatistik nehmen die Cluster der Kategorie Wohnnutzung sowohl absolut als auch bezogen auf die Clusterfläche den größten Anteil ein.

<sup>&</sup>lt;sup>3</sup> Statistisches Bundesamt, Wiesbaden 2014: Zensus 2011, Gebäude und Wohnung, Ergebnisse des Zensus am 9. Mai 2011

Ingenieure aus
Leidenschaft
plan

Tabelle 3: Clusterstatistik

|                                 | Clusteranzahl | Rel. Anteil<br>in % | Cluster-<br>fläche in ha | Rel. Anteil in<br>% |
|---------------------------------|---------------|---------------------|--------------------------|---------------------|
| Gesundheit und<br>Bäderbetriebe | 0             | 0,0%                | 0                        | 0%                  |
| Gewerbe, Handel,                | O             | 0,070               | O                        | 0 70                |
| Dienstleistung                  | 1             | 2,2%                | 8                        | 2%                  |
| Hotel                           | 0             | 0,0%                | 0                        | 0%                  |
| Industrie                       | 3             | 6,7%                | 52                       | 16%                 |
| Mischnutzung                    | 3             | 6,7%                | 17                       | 5%                  |
| Mischnutzung GHD                |               |                     |                          |                     |
| &Industrie                      | 2             | 4,4%                | 27                       | 8%                  |
| Öffentliche Verwaltung          | 1             | 2,2%                | 3                        | 1%                  |
| Sondernutzung                   | 1             | 2,2%                | 11                       | 3%                  |
| Wohnnutzung                     | 34            | 75,6%               | 215                      | 64%                 |
| Gesamt                          | 45            |                     | 333                      |                     |

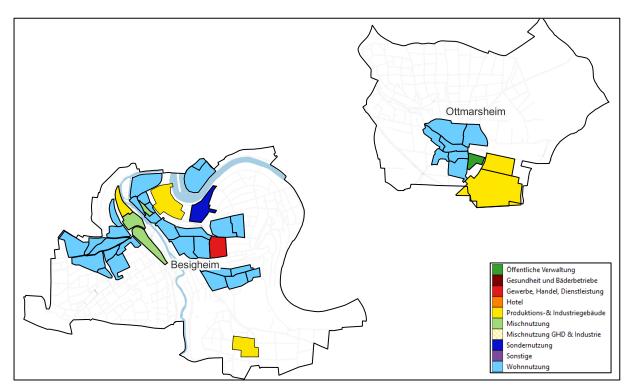



Abbildung 3: Hauptnutzungsarten der Cluster

Ingenieure aus
Leidenschaft
plan

# 4.3.3 Energieinfrastruktur

Die Dokumentation der Energieinfrastruktur im Abschlussbericht beschränkt sich neben den im Anhang aufgeführten Kennzahlen auf die Beschreibung der Gas- und Wärmenetze. Diese sind in Abbildung 4 dargestellt.

#### Gasnetzinfrastruktur

Die Wärmeversorgung erfolgt zu einem nennenswerten Anteil über das Gasnetz. Dieses liegt flächendeckend in der Kommune vor. Der Gasnetzbetreiber sind die Netze BW. Bei einer gesamten Leitungslänge von über 60 km resultiert aktuell ein Anschlussgrad von rund 35 %, wobei rund 59 % des Wärmebedarfs im Basisjahr über Erdgas gedeckt wird.

#### Wärmenetzinfrastruktur

In Besigheim befinden sich im Basisjahr keine Wärmenetze.

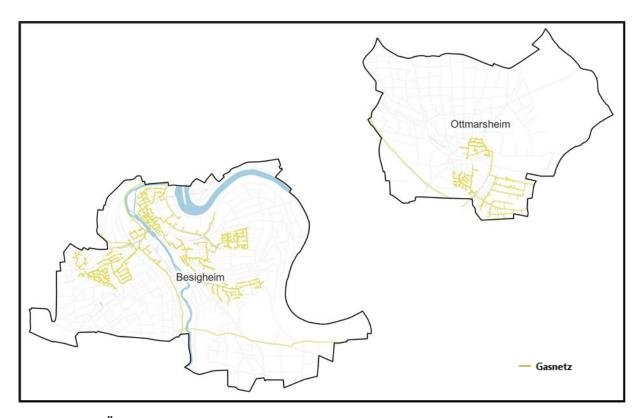



Abbildung 4: Übersichtskarte der Gas- und Wärmenetze

Projekt-Name: KWP Besigheim



# 4.3.4 Wärmebedarf

Der Wärmebedarf des Basisjahres für das gesamte kommunale Gebiet wird auf Basis von Verbrauchsdaten und flächenbezogenen Bedarfskennzahlen hochgerechnet. Verbrauchsdaten stammen aus der Datenerhebung der Energieunternehmen. Die zusätzlichen berechneten Bedarfe werden in Abhängigkeit von den Gebäudenutzungen und den ermittelten Gebäudegrundflächen kalkuliert. Dieses Verfahren schafft durch die priorisierte realen Verbrauchsdaten eine hohe Güte Verwendung der der kommunalen Wärmebedarfswerte. Bei der Betrachtung dieser Bewertungsgröße spielt die Art der Energiebereitstellung (Energieträger, Versorgungssystem) keine Rolle, dies wird im Folgekapitel behandelt.

Insgesamt resultiert in Besigheim ein Wärmebedarf<sup>4</sup> von 142.854 MWh/a. In Abbildung 5, Abbildung 6 und Abbildung 7 sind die räumlichen Verteilungen der Wärmebedarfe auf dem Kommunalgebiet ersichtlich. Neben dem absoluten Bedarf sind dort auch Wärmedichte- und Wärmeliniendichteangaben enthalten, die erste Schlüsse auf potenzielle Wärmenetzeignungsgebiete zulassen. Eine hohe Wärmedichte bzw. Wärmeliniendichte impliziert hierbei eine bessere Eignung.

Der Wärmebedarf pro Einwohner beträgt im Basisjahr rund 11 MWh/(EW·a).

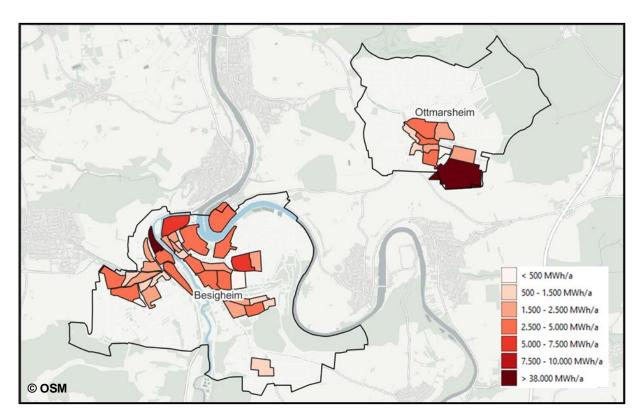



Abbildung 5: Wärmebedarf je Cluster im Basisjahr

<sup>&</sup>lt;sup>4</sup> Wärme = Erzeugernutzenergieabgabe



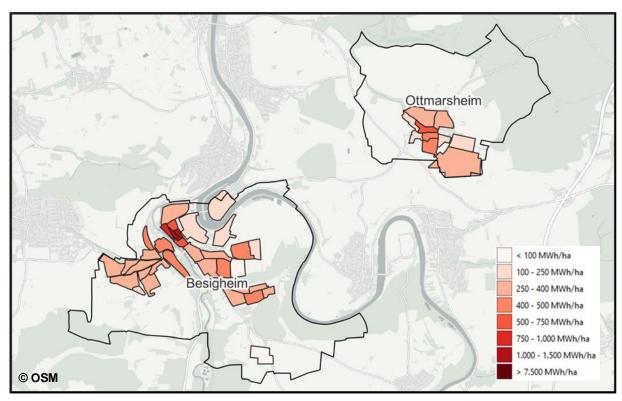



Abbildung 6: Wärmedichte je Cluster im Basisjahr

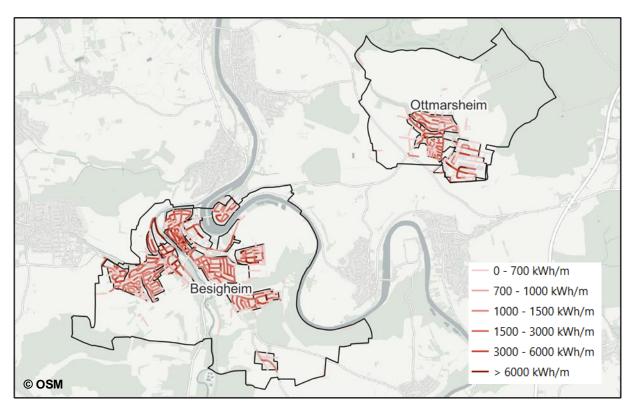



Abbildung 7: Wärmeliniendichte im Basisjahr

Ingenieure aus
Leidenschaft
plan

## 4.3.5 Endenergie- und Treibhausgasbilanz

Für die Bewertung der Ausgangssituation auf dem Weg zu einer klimaneutralen Wärmeversorgung sind die im Bereich Wärme eingesetzten Endenergieträger entscheidend. Denn das Ziel einer klimaneutralen Wärmeversorgung bedeutet, dass fossile und damit nennenswert emissionsbehaftete Energieträger durch perspektivisch emissionsfreie Energieträger zu ersetzen sind.

Für diese große Transformationsaufgabe ist es wichtig zu verstehen, wie im Basisjahr die Energieträgerzusammenstellung aussieht, sowohl nach Einsatz in den Nutzungssektoren als auch nach Energieträgern.

# Endenergiebilanz

In Abbildung 8 sind die Endenergiebedarfe im Bereich Wärme nach Verbrauchssektoren dargestellt. Bei einem Gesamtbedarf von rund 80 GWh/a nimmt die Wohnnutzung den deutlich höchsten Anteil mit knapp unter 53 % ein. Die Kategorie Gewerbe, Handel und Dienstleistung weist mit rund 48 GWh/a ebenso einen bedeutsamen Anteil am Endenergieverbrauch in Besigheim auf. Die Kategorie öffentliche Verwaltung ist mit einem Anteil von lediglich rund 2 % als untergeordnet einzustufen, aufgrund der direkten Einflussmöglichkeit der Kommunalverwaltung und der Vorbildfunktion dennoch von besonderer Relevanz. Die detaillierte Auflistung des Energieeinsatzes nach Nutzungssektoren ist in Tabelle 4 enthalten.

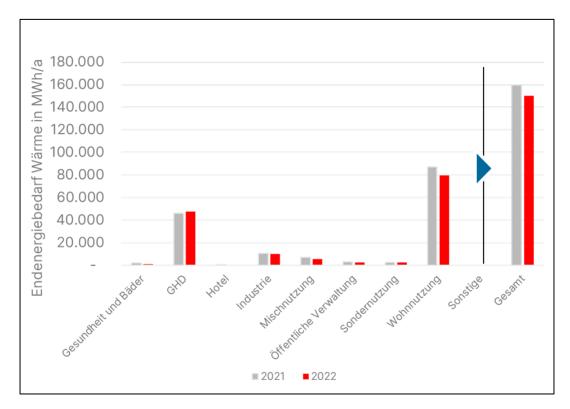



Abbildung 8: Endenergiebedarf Wärme nach Nutzungssektoren

Die Analyse des Endenergieeinsatzes nach Energieträgern verdeutlicht die große Dominanz fossiler Energieträger im Bereich der Wärmeversorgung. Durch einen Anteil von rund 59 %

Projekt-Name: KWP Besigheim



durch Erdgas und 24 % durch Heizöl ist die aktuelle Versorgung durch fossile Strukturen geprägt. In Tabelle 5 sind die jeweiligen Anteile der Energieträger an der Gesamtversorgung im Bereich Wärme detailliert aufgelistet.

Tabelle 4: Endenergie- und THG-Bilanz nach Nutzungssektoren

|                        | Endenergie<br>Wärme in MWh/a | Rel. Anteil<br>in % | THG-Emissionen in t/a | Rel. Anteil<br>in % |
|------------------------|------------------------------|---------------------|-----------------------|---------------------|
| Gesundheit und Bäder   | 1.137                        | 1%                  | 234                   | 1%                  |
| GHD                    | 47.789                       | 32%                 | 4.623                 | 13%                 |
| Hotel                  | 96                           | 0%                  | 22                    | 0%                  |
| Industrie              | 11.807                       | 8%                  | 8.058                 | 23%                 |
| Mischnutzung           | 5.573                        | 4%                  | 1.290                 | 4%                  |
| Öffentliche Verwaltung | 2.825                        | 2%                  | 685                   | 2%                  |
| Sondernutzung          | 2.449                        | 2%                  | 1.819                 | 5%                  |
| Wohnnutzung            | 79.847                       | 53%                 | 18.992                | 53%                 |
| Gesamt                 | 151.523                      |                     | 35.721                |                     |

Tabelle 5: Endenergie- und THG-Bilanz nach Energieträgern

|                      | Endenergie<br>Wärme in MWh/a | Rel. Anteil<br>in % | THG-Emissionen in t/a | Rel. Anteil<br>in % |
|----------------------|------------------------------|---------------------|-----------------------|---------------------|
| Kohle                | 0                            | 0%                  | 0                     | 0%                  |
| Biomasse             | 13.263                       | 9%                  | 292                   | 1%                  |
| Heizöl               | 36.627                       | 24%                 | 11.391                | 32%                 |
| Erdgas               | 89.634                       | 39%                 | 20.885                | 38%                 |
| Biogas               | 0                            | 0%                  | 0                     | 0%                  |
| Wärmestrom direkt    | 3.204                        | 2%                  | 1.199                 | 3%                  |
| Wärmepumpenstrom     | 1.398                        | 1%                  | 523                   | 1%                  |
| Umweltwärme Sonstige | 2.796                        | 2%                  | 0                     | 0%                  |
| Keine Angabe         | 4.601                        | 3%                  | 1.431                 | 4%                  |
| Gesamt               | 151.523                      |                     | 35.721                |                     |

Die Systeme zur Wärmeversorgung der Gebäude sind in Besigheim aktuell vollständig dezentral. Es existieren momentan keine Wärmenetze.

Ingenieure aus
Leidenschaft
plan

## Treibhausgasbilanz

Die der Treibhausgasbilanz Berechnung basiert auf den zuvor ermittelten Endenergiebedarfen. Die Energiebedarfe je Energieträger werden hierzu mit den jeweiligen Emissionsfaktoren multipliziert, um die resultierenden Treibhausgasemissionen bestimmen zu können. Zur Gewährleistung der Vergleichbarkeit der Bilanzen werden die Emissionsfaktoren angelehnt an den Technikkatalog der KEA-BW genutzt, die sowohl CO<sub>2</sub>-Äquivalente als auch Vorketten beinhalten. Die konkreten Emissionsfaktoren sind im Anhang 10.2 aufgeführt. Die mit diesem Verfahren ermittelte Menge repräsentiert die Treibhausgas-Emissionen, die im Basisjahr im Bereich der Wärmeversorgung anfallen.

Das Ziel einer klimaneutralen Wärmeversorgung bedingt, dass diese Emissionen auf ein Niveau nahe Null gesenkt werden.

Insgesamt resultieren im Basisjahr THG-Emissionen in Höhe von 35.721 Tonnen CO<sub>2</sub>-Äquivalente. Bezogen auf die Einwohnerzahl ergibt sich ein Emissions-Kennwert von rund 2,8 t pro Einwohner für den Sektor Wärme.

In Abbildung 9 ist eine Heatmap-Darstellung gewählt, um die räumliche Verteilung der Emissionen im Kommunalgebiet zu visualisieren. Die Karte zeigt auf, dass sich speziell im Altstadtbereich aufgrund der höheren Wärmedichte und der Verortung von größeren Verbrauchern Emissionsschwerpunkte herausbilden.

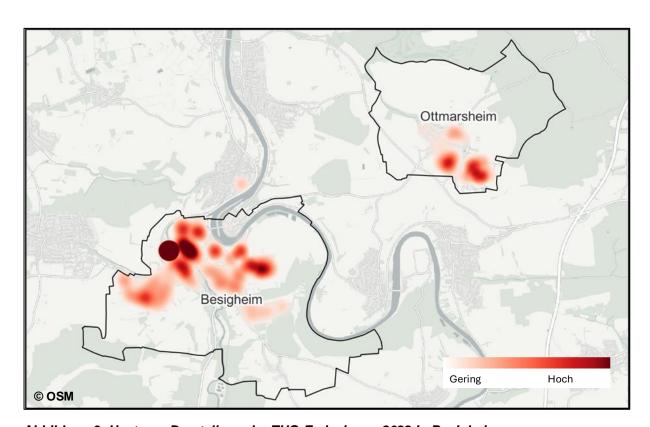



Abbildung 9: Heatmap-Darstellung der THG-Emissionen 2022 in Besigheim

Projekt-Name: KWP Besigheim



## 4.3.6 Großverbraucheranalyse

Das Ziel der Großverbraucheranalyse ist die Quantifizierung des Potenzials zur Effizienzsteigerung und Abwärmenutzung.

Im Rahmen der Bestandsanalyse sind daher die größten Verbraucher von Wärme und Gas in der Kommune analysiert worden. Mithilfe von Fragebögen konnten die größten Verbraucher kontaktiert werden, um Wissen über die Hintergründe zu den Prozessen zu generieren und Abwärmepotenziale zu ermitteln. Insofern aus den Fragebögen hervorgeht, dass Prozesse vorliegen, die die Nutzung von Abwärme begünstigen, wird im Rahmen von Interviews das Potenzial verifiziert und die Möglichkeiten einer Auskopplung der Abwärme kommuniziert.

# Ergebnis der Großverbraucherbefragung

Die Analyse der 20 größten Verbraucher im Bereich Wärme zeigt auf, dass diese für rund 40 % des gesamten Endenergiebedarfs Wärme verantwortlich sind und damit als relevant eingestuft werden. Die Befragung der Großverbraucher hat jedoch nicht zur Identifikation relevanter Abwärmemengen beigetragen, die im Zuge der KWP weiter genutzt werden könnten. Die Großverbraucher sind über das gesamte kommunale Gebiet verteilt, der Schwerpunkt liegt jedoch in der Nähe des Innenstadtbereichs (Cluster 13) und in Ottmarsheim (Cluster 45).

# 4.4 Analyse von Eignungsgebieten

Gemäß § 14 Wärmeplanungsgesetz ist im Rahmen der Erstellung einer kommunalen Wärmeplanung eine Eignungsprüfung auf Teilgebiets-Ebene durchzuführen. Dabei soll in der frühen Projektphase beantwortet werden, wie wahrscheinlich eine Eignung für eine Versorgung durch ein Wärmenetz oder ein Wasserstoffnetz eingestuft werden kann. Die Eignung für eine Wärmeversorgungsart wird dabei in vier Stufen bestimmt:

- sehr wahrscheinlich geeignet
- wahrscheinlich geeignet
- wahrscheinlich ungeeignet
- sehr wahrscheinlich ungeeignet

Im Folgenden sind die Methodik und Ergebnisse erläutert.

# 4.4.1 Eignung für eine Versorgung durch ein Wärmenetz

Für die Einstufung der Eignung eines Wärmenetzgebietes werden folgende Kriteriengruppen bestehend aus mehreren Unterkriterien herangezogen.

- 1. Wärmenetz Status Quo Bewertung existierender Wärmenetze
- 2. Wärmebedarfsdichte Wärmebedarf im Cluster
- 3. Siedlungsstruktur Bebauungsdichte, Anteil einfamilienhausähnlicher Bebauung
- 4. Ankerkunden Öffentliche Liegenschaften, Großverbraucher
- 5. Erneuerbare Energie / Abwärme Verfügbarkeit erneuerbarer Wärme
- 6. Hochtemperaturbedarf



Für jedes Unterkriterium wird nach einem objektiven Verfahren aus Ergebnissen der Bestandsanalyse eine Bewertung hinsichtlich der Wärmenetzeignung vorgenommen. In einem zweistufigen Wichtungsverfahren ergeben sich daraus die Bewertungen nach Kriteriengruppen und schließlich das Gesamtergebnis des Clusters.

Das Ergebnis der Eignungsprüfung ist in Abbildung 10 dargestellt. Deutlich erkennbar ist eine höhere Eignung in Gebieten im Stadtkern und verdichteten Bereichen, sowie Ansiedlungen von Gewerbe und Industrie. Insgesamt werden 8 Cluster als wahrscheinlich bis sehr wahrscheinlich ungeeignet eingestuft. Für 37 Cluster wird eine Eignung ermittelt, davon für 6 Cluster eine Einordnung in "sehr wahrscheinlich geeignet".

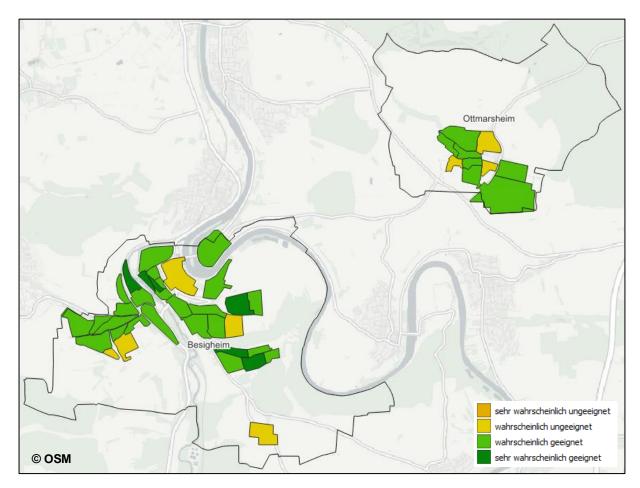



Abbildung 10: Ergebnisse der Eignungsprüfung zur Versorgung durch ein Wärmenetz



# 4.4.2 Eignung für eine Versorgung durch ein Wasserstoffnetz

Für die Einstufung der Eignung eines Gebietes zur Versorgung durch ein Wasserstoffnetz werden folgende Kriteriengruppen bestehend aus mehreren Unterkriterien herangezogen.

- 1. Gasnetz Status Quo
- 2. Gasbedarf
- 3. Geplantes H<sub>2</sub>-Netz

Für jedes Unterkriterium wird nach einem objektiven Verfahren aus Ergebnissen der Bestandsanalyse eine Bewertung hinsichtlich der Eignung für die Versorgung durch ein Wasserstoffnetz vorgenommen. In einem zweistufigen Wichtungsverfahren ergeben sich daraus die Bewertungen nach Kriteriengruppen und schließlich das Gesamtergebnis des Clusters.

Das Ergebnis der Eignungsprüfung ist in Abbildung 11 dargestellt. Deutlich erkennbar ist eine höhere Eignung entlang der bestehenden Gasnetzinfrastruktur. Insgesamt werden 3 Cluster als wahrscheinlich bis sehr wahrscheinlich ungeeignet eingestuft. Für 42 Cluster wird eine Eignung ermittelt, davon für 31 Cluster eine Einordnung in "sehr wahrscheinlich geeignet".

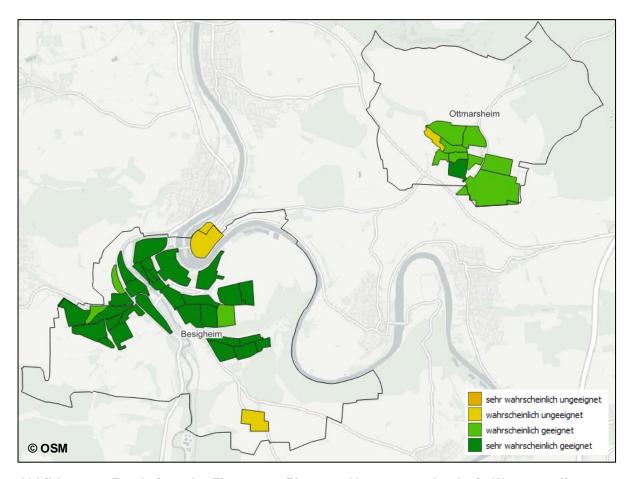



Abbildung 11: Ergebnisse der Eignungsprüfung zur Versorgung durch ein Wasserstoffnetz

Projekt-Name: KWP Besigheim



# 5 Potenzialanalyse

# 5.1 Ziele und Vorgehensweise

Im Rahmen der Potenzialanalyse werden die Potenziale zur Energieeinsparung betrachtet sowie die Potenziale zur Bereitstellung emissionsfreier Wärme und erneuerbaren Stroms. Es wird analysiert, wie sich der Wärmebedarf in der Kommune in Zukunft entwickeln kann und mit welchen Wärmequellen sich der zukünftige Wärmebedarf potenziell decken lässt. Die nachfolgenden Kapitel orientieren sich daher an den beschriebenen Inhalten und sind wie folgt geordnet:

Potenziale zur Reduktion des Wärmebedarfs
 Potenziale für klimaneutrale Wärme

Potenziale f
ür erneuerbare Stromerzeugung

#### 5.2 Potenziale zur Reduktion des Wärmebedarfs

Die Potenziale zur Energieeinsparung resultieren einerseits aufgrund von Wärmebedarfsreduktion in Gebäuden durch energetische Sanierungen und andererseits durch Steigerung der Energieeffizienz bei industriellen und gewerblichen Prozessen.

#### 5.2.1 Potenziale zur Wärmebedarfsreduktion in Gebäuden

Für die Ermittlung des Einsparpotenzials durch Sanierungen an der Gebäudehülle werden nur die Gebäudenutzungen analysiert, bei denen eine Verbesserung der Gebäudehülle, einen wesentlichen Einfluss auf den Wärmebedarf haben. Dazu gehören die Wohnnutzung, Mischnutzung, Öffentliche Verwaltung und Hotelnutzung. Es werden drei unterschiedliche Szenarien betrachtet. Die Randbedingungen der Szenarien sind in Tabelle 6 aufgeführt.

Bei den Sanierungsszenarien wird jeweils von einer idealtypischen Vorgehensweise ausgegangen, bei der zuerst die Gebäude mit dem höchsten flächenspezifischen Wärmebedarf auf das Zielniveau saniert werden. Die Auswirkungen auf den Wärmebedarf aller Gebäude der analysierten Gebäudenutzungen zeigt Abbildung 12. Im Rahmen der weiteren Erstellung der KWP ist das Szenario 1 als Leitszenario für die Berechnungen in der Potenzialanalyse und für die Zielszenario-Erstellung verwendet worden.

Tabelle 6: Sanierungsszenarien im Rahmen der KWP

|                  | Szenario 1                                          | Szenario 2                                          | Szenario 3                                          |
|------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Sanierungsrate   | 2%/a                                                | 1%/a                                                | 2%/a                                                |
| Reihenfolge      | Gebäude mit höchstem<br>spezifischen<br>Wärmebedarf | Gebäude mit höchstem<br>spezifischen<br>Wärmebedarf | Cluster mit höchster<br>spezifischen<br>Wärmedichte |
| Zielzustand nach | Effizienzhaus 70                                    | Effizienzhaus 70                                    | Effizienzhaus 70                                    |



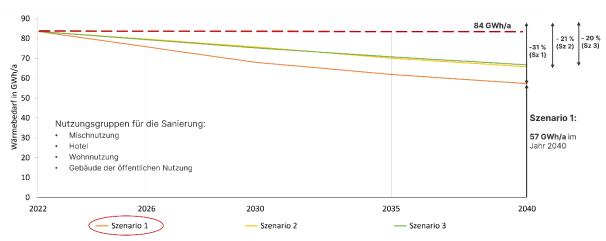



Abbildung 12: Entwicklung des Wärmebedarfs verschiedener Sanierungsszenarien

# 5.2.2 Potenziale durch Steigerung von Prozesseffizienzen

Bei der Senkung des Energiebedarfs durch Steigerung der Prozesseffizienz wird mit einem Szenario basierend auf dem Leitfaden für die kommunale Wärmeplanung der KEA gerechnet (Peters, Steidle, & Böhnisch, 2020). Hierbei werden für die Industrie- und Gewerbenutzung Reduktionspfade zur Beschreibung der Effizienzpotenziale angenommen. Diese sind in den nachfolgenden Diagrammen abgebildet.

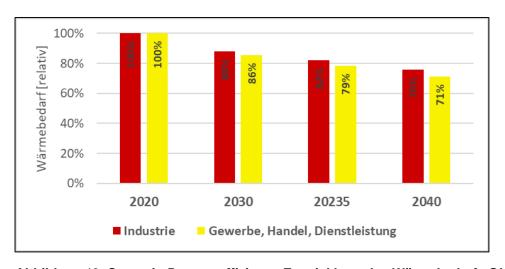



Abbildung 13: Szenario Prozesseffizienz - Entwicklung des Wärmebedarfs GHD und Industrie

# 5.2.3 Gesamtpotenzial zur Reduktion des Wärmebedarfs

In Summe resultiert für das Zieljahr ein Einsparpotenzial durch Wärmebedarfsreduktion in Gebäuden und Erhöhung von Prozesseffizienzen in Höhe von 38 GWh/a. Dies entspricht einer relativen Einsparung in Höhe von 27 %. Der Wärmebedarf im Basisjahr sinkt dabei von 143 GWh/a auf unter 105 GWh/a. Zuzüglich der berücksichtigten Neubauvorhaben

Projekt-Name: KWP Besigheim



(Wohngebiete Schimmelfeld, Seiten, Ziegelwerk, Sprollweg, Nördlich Uhlandstraße) mit einem Wärmebedarf von insgesamt knapp 7 GWh/a ergibt sich für das Zielszenario ein potenziell zu deckender Wärmebedarf von 112 GWh/a. Abbildung 14 zeigt für das Leitszenario die zeitliche Entwicklung des Energiebedarfs im Bereich Wärme auf. Ergänzend sind in Tabelle 7 die Ergebnisse für die jeweiligen Zeitschritte nach Nutzungssektoren aufgeschlüsselt.

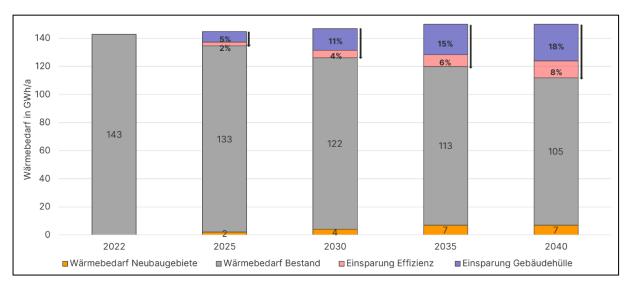



Abbildung 14: Energiebedarfsentwicklung – Szenario 1

Tabelle 7: Energiebedarfsentwicklung nach Sektoren – Szenario 1

| Sektor                 | 2022    | 2030    | 2035    | 2040    |
|------------------------|---------|---------|---------|---------|
| Gesundheit und Bäder   | 952     | 952     | 952     | 952     |
| GHD                    | 18.881  | 16.716  | 15.363  | 14.010  |
| Hotel                  | 91      | 91      | 91      | 91      |
| Industrie              | 32.571  | 29.444  | 27.490  | 25.535  |
| Mischnutzung           | 5.202   | 3.965   | 3.910   | 3.868   |
| Öffentliche Verwaltung | 3.120   | 2.482   | 2.456   | 2.456   |
| Sondernutzung          | 7.174   | 7.174   | 7.174   | 7.174   |
| Wohnnutzung            | 74.865  | 61.408  | 55.309  | 50.761  |
| Neubaugebiete          | -       | 3.973   | 7.018   | 7.018   |
| Gesamt                 | 142.854 | 126.204 | 119.762 | 111.864 |

Ingenieure aus
Leidenschaft
plan

## Gebiete mit erhöhtem Einsparpotenzial

Gemäß § 18 Abs. 5 WPG sind Gebiete mit erhöhtem Energieeinsparpotenzial aufzuzeigen. Diese können durch Sanierungsmaßnahmen und Prozesseffizienzsteigerung einen relevanten Beitrag zur Erreichung der Wärmewendeziele beitragen. In Abbildung 15 sind die absoluten Wärmeeinsparpotenziale im Zieljahr gegenüber dem Basisjahr für die einzelnen Cluster dargestellt. Diese Analyse wird unter anderem zur Identifikation kommunaler Fokusgebiete gemäß Kapitel 7.3.2 weiterverwendet.

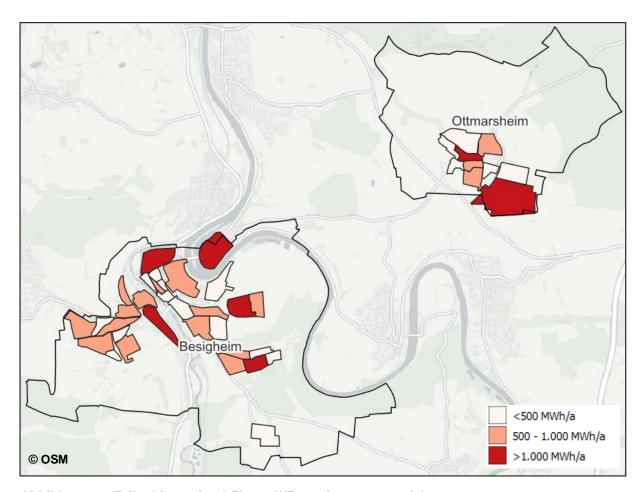



Abbildung 15: Teilgebiete mit erhöhtem Wärmeeinsparpotenzial

#### 5.3 Potenziale für klimaneutrale Wärme

Aufbauend auf den Ergebnissen der Bestandsanalyse wird im Rahmen der Potenzialanalyse aufgezeigt, welche Nutzungspotenziale erneuerbarer Energieträger und klimaneutraler Wärmequellen aus heutiger Sicht bis zum Zieljahr erschlossen werden können.

Bedingt durch die niedrigeren, spezifischen Treibhausgas-Emissionswerte sinken bei der Substitution fossiler Energieträger durch erneuerbare Energien die treibhausrelevanten Emissionen. Regional betrachtet, resultiert eine erhöhte Wertschöpfung in Form von positiven Beschäftigungseffekten durch die Nutzung lokal verfügbarer Ressourcen wie zum Beispiel

Projekt-Name: KWP Besigheim



Sonne, Wasser, Wind, Biomasse und Erdwärme. Zudem reduziert die Nutzung regenerativer Energieträger die Importabhängigkeit und sichert die fossilen Ressourcen für die immer wichtiger werdende stoffliche Verwertung in der Industrie.

In den folgenden Kapiteln werden zunächst die Einzelpotenziale zur Nutzung klimaneutraler Wärme für die Kommune analysiert und im Kontext der kommunalen Wärmeplanung bewertet. Die Karten zeigen jeweils die prozentuale Deckung des Wärmebedarfs im Zieljahr durch das entsprechende Potenzial (Nachfragepotenzial).

Die Ausarbeitung enthält folgende, lokal zuordenbare Potenziale:

- Abwärme Industrie und Gewerbe
- Abwasser Kanal
- Abwasser Kläranlage
- Biomasse
- Flusswasser
- Geothermie Kollektoren
- Geothermie Sonden dezentral

- Geothermie Sonden zentral
- Grundwasser
- Seewasser
- Solarthermie dezentral
- Solarthermie zentral
- Tiefengeothermie

Ergänzend werden auch im Rahmen der kommunalen Wärmeplanung die Nutzungspotenziale von Wärmequellen und Energieträgern betrachtet, die in der Regel ortsunabhängig für eine klimaneutrale Wärmeversorgung Verwendung finden können. Darunter fallen im Wesentlichen die Außenluft, Biomasse sowie "Grüne Gase". Diese sind in Kapitel 5.3.13 beschrieben.

#### 5.3.1 Unvermeidbare Abwärme – Industrie und Gewerbe

Unvermeidbare Abwärme aus Prozessen von Industrie- und Gewerbebetrieben, die in Herstellungs- und Verarbeitungsprozessen als Nebenprodukt anfällt und aktuell ungenutzt an die Umgebung abgegeben wird, gilt als klimaneutrale Wärmeversorgungsoption. Ziel der Abwärmenutzung ist es, die verfügbare Abwärme sinnvoll für Wärmeversorgungen außerhalb der eigenen Unternehmensgrenzen zu aktivieren.

Abhängig vom Temperaturniveau, der Wärmemenge und dem Wärmeträgermedium wird bei der kommunalen Wärmeplanung analysiert, wie die Abwärme in der Nähe des Unternehmens oder über ein Wärmenetz für externe Nutzungen verwendet werden kann.

In Abgrenzung zur allgemein gültigen Definition der Abwärmenutzung liegt die betriebs- und prozessinterne Abwärmenutzung in der Regel nicht im Bewertungsrahmen der kommunalen Wärmeplanung.

# Datengrundlage

Im Rahmen der Bestandsanalyse werden die größten Wärmeverbraucher auf dem Kommunalgebiet näher betrachtet. Im Klimaschutzgesetz ist dazu eine rechtliche Grundlage zur Datenerhebung mit aufgenommen. Die Befragung dieser Großverbraucher gemäß Kapitel 4.3.6 liefert unter anderem Informationen zum Abwärmeaufkommen dieser Unternehmen und der Bereitschaft, sich an kommunalen Wärmeversorgungskonzepten zu beteiligen.

Projekt-Name: KWP Besigheim



# **Ergebnis**

Als Ergebnis der Großverbraucheranalyse liegen nun Angaben zu Abwärmemengen, Temperaturniveaus und zeitlicher Verfügbarkeit vor. Diese Informationen werden mit den Wärmebedarfsprognosen für das Zieljahr im eigenen Cluster und den umliegenden Clustern abgeglichen. Der Abgleich erfolgt dabei auf monatlicher Basis, um zeitliche Abhängigkeiten bei der Verfügbarkeit der Abwärme und beim Wärmebedarf adäquat berücksichtigen zu können.

Mit der vorliegenden Analyse für "Unvermeidbare Abwärme – Industrie und Gewerbe" resultiert jedoch kein nutzbares Potenzial.

#### 5.3.2 Abwasser - Kanal

Die kommunale Wasser- und Abwasserinfrastruktur ist in Siedlungsgebieten flächendeckend vorhanden. In den Abwasserkanälen wird Abwasser und meist auch Regenwasser gesammelt und zu den kommunalen Kläranlagen geleitet. Das Abwasser befindet sich dabei auf einem Temperaturniveau, das für eine energetische Nutzung durch eine Wärmepumpe gut geeignet ist (in der Regel > 10 °C).

Mit Wärmetauschern wird dem Abwasser Wärme entzogen und als Wärmequelle für elektrische Wärmepumpen nutzbar. Für das Entzugssystem können verschiedene Bauformen zum Einsatz kommen:

- Doppelrohr-Wärmetauscher als im Abwasserrohr integrierte Lösungen (Neubau/Ersatz)
- Kanalwärmetauscher für den Einbau in bestehende Kanäle
- Rohrbündelwärmetauscher im Bypass; die sich in einem separaten Bauwerk befinden

Im Kontext der kommunalen Wärmeplanung sind für ausgewählte Kanalabschnitte die Wärmenutzungspotenziale abgeschätzt worden. Unter anderem finden folgende Datengrundlagen in der Ermittlung Verwendung.

## Datengrundlage

Informationen zu den Kanaldimensionen und -querschnitten stammen in der Regel vom kommunalen Amt für Entwässerung und auch den Stadtwerken. Die Durchflussmenge und Temperatur des Abwassers hängen davon ab, ob der Kanal als Schmutz-, Misch- oder Regenwassersystem betrieben wird. Für die Abwasserwärmenutzung mit einer Wärmepumpe ist ein kontinuierliches Abwasseraufkommen erforderlich. Anhand des georeferenzierten Kanalnetzes, der anfallenden Abwassermenge an der Kläranlage sowie spezifischen Kennwerten für den Schmutzwasseranfall im Bereich Wohnung, GWD und verarbeitendes Gewerbe wurde an verschiedenen Referenzpunkten im Kanalnetz der Durchfluss berechnet.

Projekt-Name: KWP Besigheim



### **Ergebnis**

Die Analyse für das Potenzial zeigt auf, dass im Zieljahr ein Wärmedeckungspotenzial in Höhe von 0,3 % resultiert. Insgesamt können damit theoretisch aus Abwasserwärme aus den Kanälen rund 300 MWh/a für die Wärmebereitstellung in der Kommune angenommen werden. In der nachfolgenden Abbildung 16 ist die räumliche Verteilung der Potenziale dargestellt.

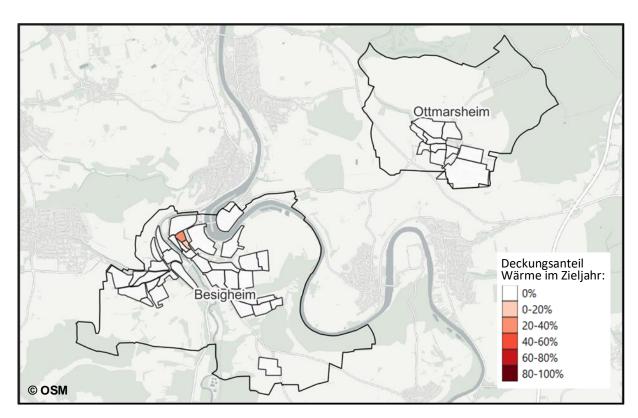



Abbildung 16: Potenzialkarte "Abwasser - Kanal" auf Clusterebene

### 5.3.3 Abwasser – Kläranlage

In Abgrenzung zur Abwasserwärmenutzung in den Kanälen steht das Potenzial "Abwasser – Kläranlage" für ein zentral erschließbares, urbanes Umweltwärmepotenzial. Im Gegensatz zu der Abwasserwärmenutzung im Zulauf der Kläranlagen wird hierbei eine thermische Nutzung des geklärten Abwassers im Auslauf der Kläranlage betrachtet. Der wesentliche Vorteil dieses Konzeptes besteht darin, dass die Abwasserwärmenutzung die biologischen Prozesse in der Kläranlage nicht mehr negativ beeinflussen kann. Vielmehr kann durch das abgekühlte Abwasser ein weiterer positiver Effekt speziell in den Sommermonaten für die Gewässer entstehen, in denen das geklärte Wasser eingeleitet wird.

Dem Abwasser an Kläranlagen wird über Wärmetauscher Wärme entzogen. Diese zentral erschlossene Abwasserwärme kann im Anschluss direkt über Großwärmepumpen oder indirekt über ein kaltes Wärmenetz mit dezentralen Wärmepumpen für externe Wärmeanwendungen nutzbar gemacht werden. Im Vergleich zur Abwasserwärmenutzung in den Kanälen resultieren am Auslauf der Kläranlage höhere Potenziale durch die größeren

Projekt-Name: KWP Besigheim



Durchflussmengen und die höhere mögliche Temperaturspreizung. Dadurch können auch Cluster, die nicht in direkter Nähe sind, für eine Abwasserwärmenutzung in Frage kommen. In der Regel sind Cluster in einer Entfernung von bis zu mehreren hundert Metern hierfür geeignet.

## Datengrundlage

Die erforderlichen Daten zu Durchflussmengen und Temperaturen am Auslauf der Kläranlagen stammen von den Anlagenbetreibern (z.B. Abwasserwirtschaftsbetriebe der Kommune) und stellen damit eine hohe Datengüte für die Berechnung des Wärmepotenzials dar.

## **Ergebnis**

Die Analyse für das Potenzial zeigt auf, dass im Zieljahr ein Wärmedeckungspotenzial in Höhe von 3 % resultiert. Insgesamt können damit theoretisch aus Abwasserwärme aus den Kläranlagen rund 3.500 MWh/a für die Wärmebereitstellung in der Kommune angenommen werden.

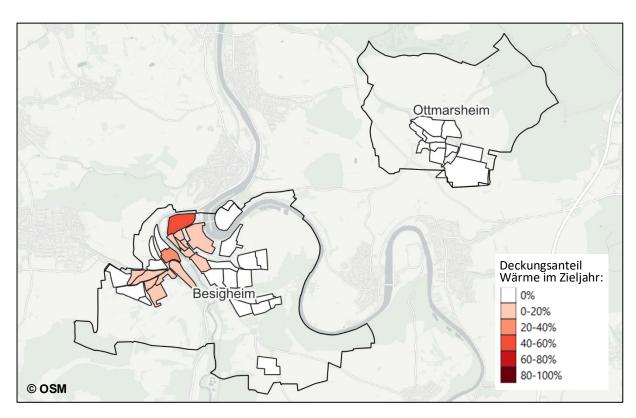



Abbildung 17: Potenzialkarte "Abwasser – Kläranlage" auf Clusterebene

#### 5.3.4 Flusswasser

Die Potenzialanalyse zur Wärmenutzung aus Flusswasser beinhaltet die Betrachtung fließender Oberflächengewässer. Da im Rahmen der kommunalen Wärmeplanung die Potenziale mit kommunaler Relevanz im Fokus liegen beschränkt sich die Betrachtung auf größere Fließgewässer wie Flüsse. Kleinere Bäche und Bachläufe sind nicht Teil der Analyse.

Projekt-Name: KWP Besigheim



Aufbauend auf der Bestandsanalyse (Lage von potenziell zu versorgenden Clustern) und einer manuellen Sichtung und Bewertung von Flurstücken in Gewässernähe werden potenziell geeignete Standorte für eine Flusswasserwärmenutzung identifiziert.

Die Analyse des Flusswasserpotenzials basiert auf der Annahme, dass dem Fließgewässer Wasser entnommen und diesem über einen externen Wärmetauscher Wärme entzogen wird. Für die Wärmeversorgung wird die entzogene Wärme über Großwärmepumpen in Kombination mit Wärmenetzen oder indirekt über ein kaltes Wärmenetz mit dezentralen Wärmepumpen auf das erforderliche Temperaturniveau angehoben. Das abgekühlte Wasser wird im Anschluss dem Fluss wieder zugeführt. Die potenziell nutzbare Wärmemenge aus dem Flusswasser hängt vom Temperatur-Jahresverlauf des Gewässers, der Wassermenge und der möglichen Temperatur-Spreizung ab.

### Datengrundlage

Die Datengrundlage für die Berechnung des Flusswasserpotenzials ist die Durchflussmenge sowie die Wassertemperatur im Jahresverlauf. Diese können zum Teil dem Daten- und Kartendienst der Landesanstalt für Umwelt Baden-Württemberg (LUBW, <a href="https://udo.lubw.baden-wuerttemberg.de/public/?highlightglobalid=gewaesserguetedaten">https://udo.lubw.baden-wuerttemberg.de/public/?highlightglobalid=gewaesserguetedaten</a>) entnommen werden.

### **Ergebnis**

Die Analyse für das Potenzial zeigt auf, dass im Zieljahr ein Wärmedeckungspotenzial in Höhe von 23 % resultiert. Insgesamt können damit theoretisch aus Flusswasserwärme rund 23.400 MWh/a für die Wärmebereitstellung in der Kommune angenommen werden. Die räumliche Verteilung des Potenzials entlang des Neckars und der Enz in Abbildung 18 zeigt konkret mögliche Versorgungsgebiete in Besigheim.

Ingenieure aus

Leidenschaft

plan

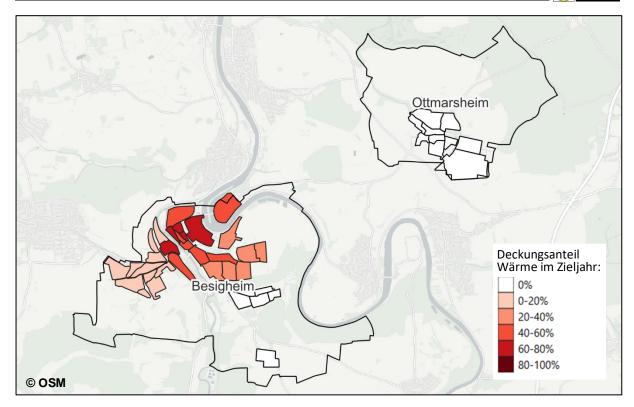



Abbildung 18: Potenzialkarte "Flusswasser" auf Clusterebene

## 5.3.5 Geothermie - Kollektoren zentral

Geothermie ist die unterhalb der festen Erdoberfläche gespeicherte Energie in Form von Wärme und kann als klimafreundliche, alternative Energiequelle auf dem Kommunalgebiet genutzt werden. Verschiedene Technologien werden zum Heizen, Kühlen oder zur Stromerzeugung mittels Erdwärme eingesetzt. Oberflächennahe Wärmereservoirs dienen zum Beispiel den Wärmepumpensystemen als Wärmequelle. Tiefengeothermie bietet ein Potenzial zur Nutzung höherer Temperaturniveaus im Erdinneren für die Stromerzeugung.

Im Rahmen der Potenzialanalyse "Geothermie – Kollektoren zentral" wird die Erdwärme-Erschließung über Flächenkollektoren auf Freiflächen im Außenraum betrachtet. Im Gegensatz zu Erdwärmesonden befinden sich die Flächenkollektoren im Erdreich lediglich in einer Tiefe zwischen 1 bis 3 Metern. Dem Erdreich wird mit den Flächenkollektoren als Wärmetauscher Wärme entzogen und über Wärmepumpen auf das erforderliche Temperaturniveau angehoben.

## Datengrundlage

Zu Beginn werden die potenziellen Freiflächen ermittelt, welche grundsätzlich eine Eignung für Erdwärmekollektoren vorweisen. Hierzu wird zunächst eine Positivauswahl aus dem digitalen Liegenschaftskataster getroffen. Die Auswahl erfolgt nach hinterlegten Nutzungen wie Brachland, Grünland, Unland und Ackerland. Ergänzend werden Konversionsflächen und Seitenrandstreifen (hier auch Ackerland unabhängig der Ertragsfähigkeit) aufgenommen. Anschließend werden Ausschlussflächen definiert und von der Positivauswahl abgezogen.

Projekt-Name: KWP Besigheim



Ausschlussflächen sind u.a. Kriterien für die Definition von Naturschutz Landschaftsschutz, Bodendenkmäler, Grünzäsuren, Vorranggebiete für Siedlungsbau und Infrastruktur, Biosphärengebiete, Landschaftsschutzgebiete, Natura 2000 Gebiete (FFH-Gebiete) und Wasserschutzgebietszonen I, II, III und IIIA. Innerhalb der Wasserschutzzone IIIB ist der Betrieb von geothermischen Anlagen unter der Auflage von Wasser als möglich. Wärmeträgermedium Die Grundlagen hierfür stammen aus den Flächennutzungsplänen, der Regionalplanung und kommunalen Bauleitplanungen. Zusätzlich wird als Bedingung gesetzt, dass sich die Freiflächen in räumlicher Nähe zu Clustern mit Wärmebedarf befinden und eine zusammenhängende Mindestgröße nicht unterschreiten.

Bei der anschließenden Priorisierung und Auswahl von Eignungsflächen werden bereits ackerbaulich genutzte Flächen (speziell mit guten Ertragswerten) und solche mit einer Lage innerhalb weicher Restriktionsgebiete (z.B. Naturschutzgebiete, die ggf. eine eingeschränkte Nutzung erlauben) niedriger priorisiert. Die resultierenden Flächen werden manuell geprüft und weitere Nutzungsmerkmale analysiert, die gegen eine Nutzung für das Potenzial "Geothermie – Kollektoren zentral" sprechen. Zum Beispiel werden bei einer Analyse von Luftfotos Grünlandflächen identifiziert, auf denen sich erhaltenswerte Streuobstwiesen befinden. Diese Information ist in den genannten Planunterlagen nicht enthalten, führt aber aktuell zu einem Ausschlusskriterium bei diesem Anwendungsfall.

Eine detaillierte Auflistung der Flächennutzungskategorien und deren Einordnung als Ausschluss- und Eignungsflächen kann in Anhang 10.1 eingesehen werden.

Die verbliebenen Flächen werden in Abstimmung mit der Kommunalverwaltung für die Nutzung als Energieinfrastruktur dokumentiert und priorisiert. In Abbildung 19 sind die als geeignet identifizierten Freiflächen dargestellt.

Ingenieure aus
Leidenschaft
plan

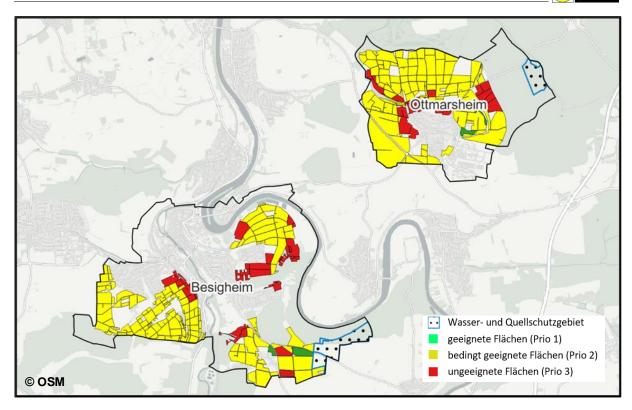



Abbildung 19: Eignungsflächen für das Potenzial "Geothermie – Kollektoren zentral"

Die Ansätze für die Priorisierung der Freiflächen orientieren sich im Wesentlichen an der nachfolgendenden Auflistung. Die Flächenangaben zu diesen Potenzialflächen und die Einordnung zur gesamten Kommunalfläche sind in Tabelle 8 enthalten.

- Geeignet: gute Lage; Industrienähe, Randstreifen, außerhalb von Schutzzonen (keine Einschränkungen zu erwarten), Nutzung mit geringem Aufwand möglich (kaum Bewuchs)
- 2. Bedingt geeignet: In Schutzzonen (Einschränkungen oder Auflagen zu erwarten), Nutzung mit Aufwand möglich (leichter Bewuchs), Ackernutzung '
- 3. Ungeeignet: Nutzung nicht möglich (starker Bewuchs), aktuelle Flächennutzung bietet kein Potenzial (Neubaugebiet, Kleingärten, Streuobstwiesen, ...

Tabelle 8: Priorisierungsergebnis des Freiflächenpotenzials "Geothermie – Kollektoren zentral"

| Priorisierung | Fläche | Anteil an Fläche der Kommune |
|---------------|--------|------------------------------|
| 1             | 10 ha  | 0,6 %                        |
| 2             | 514 ha | 30,2 %                       |
| 3             | 119 ha | 7,0 %                        |
| Summe         | 643 ha | 37,7 %                       |

Ingenieure aus
Leidenschaft
plan

## **Ergebnis**

Die Analyse für das Potenzial zeigt auf, dass im Zieljahr ein Wärmedeckungspotenzial in Höhe von 50 % resultiert. Die Ermittlung des Deckungspotenzials basiert auf einer angenommenen Entzugsarbeit von 25 kWh/(m²·a) für Anlagen außerhalb von Wasserschutzgebieten und für wasserbetriebene Anlagen (innerhalb Wasserschutzzone IIIB) von 13 kWh/(m²·a) für die Versorgung der angrenzenden Cluster über Wärmepumpen. Hierbei werden die absolute Höhe und die jahreszeitliche Verteilung des zukünftigen Wärmebedarfs der Cluster mitberücksichtigt. Theoretisch ergeben sich damit aus dem Potenzial "Geothermie – Kollektoren zentral" insgesamt rund 55.600 MWh/a für die Wärmebereitstellung in der Kommune.

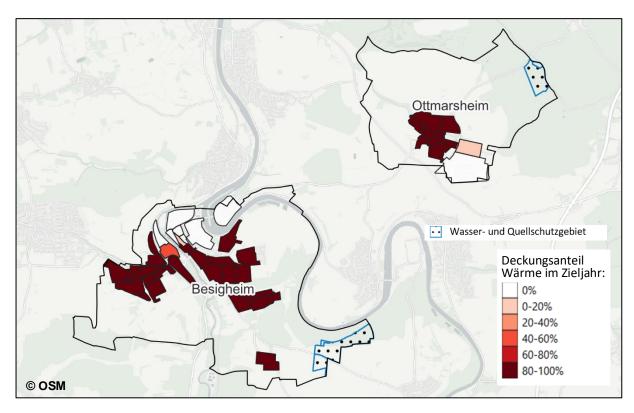



Abbildung 20: Potenzialkarte "Geothermie – Kollektoren zentral" auf Clusterebene

Projekt-Name: KWP Besigheim



### 5.3.6 Geothermie - Sonden dezentral

Die Potenzialkategorie "Geothermie – Sonden dezentral" betrachtet die Nutzung der oberflächennahen Geothermie über Erdwärmesonden. Der Zusatz "dezentral" beschränkt die Potenzialanalyse für die Erdwärmeerschließung auf eigene Flurstücke von Gebäuden mit Wärmebedarf. Die Potenzialkategorie "Geothermie – Sonden zentral" analysiert die Nutzungsmöglichkeiten auf Freiflächen im Außenraum auch für Wärmenetze.

Grundsätzlich gilt auch bei Erdwärmesonden, dass die erschließbare Umweltwärme mittels Wärmepumpen in den Gebäuden nutzbar gemacht wird.

Für die Ermittlung der maximal möglichen Erdwärmesonden auf einem Flurstück werden die Flächen um Gebäude mit Hilfe des Geoinformationssystems räumlich analysiert. Unter Berücksichtigung von Abständen zu Nachbargrundstücken, Gebäuden und Mindestabständen einzelner Sonden untereinander von z.B. 10 m bei 100 m Tiefe wird je Flurstück die maximal verortbare Sondenanzahl ermittelt. Diese bildet die Grundlage für die Berechnung des potenziellen Wärmedeckungsanteils je Gebäude, welcher auf maximal 100 % begrenzt wird. Die flurstücks- bzw. gebäudescharfen Daten sind im weiteren Verfahren auf Clusterebene aggregiert und dargestellt.

## Datengrundlage

Für die Kommune werden zunächst grundlegende geologische Informationen des Untergrunds gesammelt und ausgewertet. Das Landesamt für Geologie, Rohstoffe und Bergbau (LGRB) im Regierungspräsidium Freiburg stellt dazu umfassende Daten über das "Informationssystem Oberflächennahe Geothermie für Baden-Württemberg (ISONG)" zur Verfügung. Für die Potenzialabschätzung relevante Parameter sind hieraus unter anderem Wasserschutzgebiete, Heilquellenschutzgebiete, Bohrtiefenbegrenzungen und die geothermische Effizienz des Untergrunds.

## **Ergebnis**

Die Analyse für das Potenzial "Geothermie – Sonden dezentral" zeigt auf, dass im Zieljahr ein Wärmedeckungspotenzial in Höhe von 49 % resultiert. Die Ermittlung des Deckungspotenzials basiert auf einer angenommenen Entzugsarbeit von 70 kWh/(m·a) für Anlagen außerhalb von Wasserschutzgebieten und für wasserbetriebene Anlagen (innerhalb Wasserschutzzone IIIB) von 38 kWh/(m·a) für die Versorgung der Gebäude über Wärmepumpen. Insgesamt können damit theoretisch aus dem Potenzial "Geothermie – Sonden dezentral" rund 54.600 MWh/a für die Wärmebereitstellung in der Kommune angesetzt werden.

Projekt-Nr.: F23365 Projekt-Name:

**KWP** Besigheim



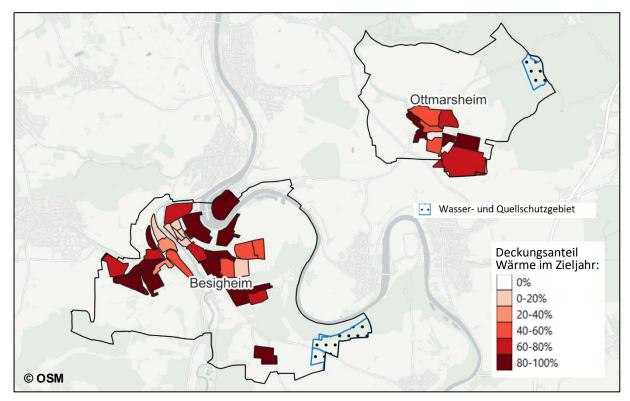



Abbildung 21: Potenzialkarte "Geothermie – Sonden dezentral" auf Clusterebene

## 5.3.7 Geothermie – Sonden zentral

Analog zur Erschließung der oberflächennahen Geothermie für Erdwärmekollektoren erfolgt die Potenzialermittlung für die Kategorie "Geothermie – Sonden zentral". Die Identifikation geeigneter Freiflächen erfolgt auf gleichem Wege.

Technisch unterscheidet sich die Ermittlung des Wärmepotenzials darin, dass für die resultierenden Freiflächen im Folgeschritt die mögliche Anzahl von vertikalen Erdwärmesonden berechnet wird. Die Maximalanzahl ergibt sich aus der Geometrie der Freifläche und den Sondenabständen in Abhängigkeit von der Bohrtiefenbegrenzung. Für die resultierende Sondenzahl wird dann das mögliche Entzugspotenzial ermittelt und mit dem perspektivischen Wärmebedarf angrenzender Cluster im Zieljahr abgeglichen. Aus dieser Berechnung resultiert der potenzielle Wärmedeckungsanteil auf Clusterebene.

### Datengrundlage

Die Datengrundlage und Methodik zur Ermittlung potenzieller Freiflächen entspricht der Beschreibung aus Kapitel "5.3.5 Geothermie – Kollektoren zentral".

## **Ergebnis**

Die Analyse für das Potenzial "Geothermie – Sonden zentral" ergibt für das Zieljahr ein Wärmedeckungsanteil in Höhe von 59 % resultiert. Die Ermittlung des Deckungspotenzials basiert auf einer angenommenen Entzugsarbeit von 50 kWh/(m⋅a) für Anlagen außerhalb von Wasserschutzgebieten und für wasserbetriebene Anlagen (innerhalb Wasserschutzzone IIIB)

Ingenieure aus
Leidenschaft
plan

von 25 kWh/(m⋅a) für die Versorgung der Gebäude über Wärmepumpen. Theoretisch ergeben sich damit aus diesem Potenzial insgesamt rund 65.500 MWh/a für die Wärmebereitstellung in der Kommune.

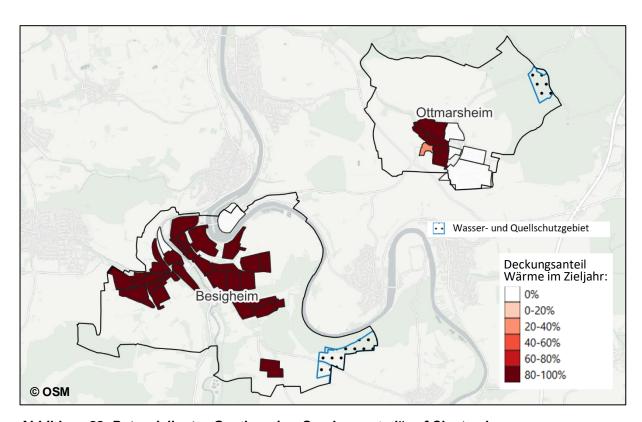



Abbildung 22: Potenzialkarte "Geothermie – Sonden zentral" auf Clusterebene

#### 5.3.8 Grundwasser

Die Grundwassernutzung in Kombination mit Wärmepumpen stellt bei entsprechender Ergiebigkeit in der Regel eine effiziente und wirtschaftliche Möglichkeit für eine klimaneutrale Wärmeversorgung dar (Peters, Steidle, & Böhnisch, 2020). Grundwasser wird hierbei über Brunnenanlagen gefördert und als Umweltwärmequelle für Wärmepumpen genutzt. Dies kann zentral über Großwärmepumpen in Wärmenetzen oder über dezentrale Wärmepumpen in Gebäuden erfolgen. Das abgekühlte Grundwasser wird im Anschluss über Injektionsbrunnen dem Untergrund wieder zugeführt.

In Abhängigkeit von der Ergiebigkeit, der Tiefe und Temperatur der Grundwasserleiter variieren die Nutzungspotenziale für thermische Anwendungen. Darüber hinaus ist zu beachten, dass sich einzelne Brunnenanlagen nicht gegenseitig negativ beeinflussen dürfen. Zur relativ komplexen Beurteilung dieser Frage sind detaillierte Angaben zu Entnahme- und Injektionsbrunnenstandorten, Grundwasser-Nutzungsmengen und Fließrichtungen im Rahmen von hydrogeologischen Simulationen erforderlich. Diese lassen sich in der Regel gegebenenfalls erst durch entsprechende Erkundungsmaßnahmen mit Pumpversuchen bestimmen. Ergänzend können die unteren Wasserbehörden Erfahrungswerte aus z.B.

Projekt-Name: KWP Besigheim



bestehenden Brunnenanlagen zur Bewertung der Grundwassersituation in der Kommune und einzelnen Stadtteilen bereitstellen.

Aufgrund dieser Komplexität kann im Rahmen der kommunalen Wärmeplanung die Potenzialerhebung nicht vorgenommen werden. Im Einzelfall sind projektspezifisch die oben genannten Eignungskriterien zu prüfen. Speziell die Fragestellung, ob durch eine geplante Grundwassernutzung bestehende Anlagen beeinträchtigt werden, ist hierbei zu prüfen.

Im Kontext der kommunalen Wärmeplanung werden daher lediglich die Gebiete dargestellt, die grundsätzlich für eine Grundwassernutzung nicht ausgeschlossen sind. Ausgeschlossen werden zum Beispiel sensible Grundwassernutzungen in Wasser- und Heilquellenschutzgebieten.

## Datengrundlage

Informationen zur Lage grundwasserführenden Schichten sowie deren Mächtigkeiten, bekannten Altlasten und bestehenden Brunnenanlagen sind für eine projektspezifische Einzelfallbeurteilung erforderlich. Übergeordnet sind Schutzgebietseinordnungen (u.a. Wasserschutz, Heilquellen) hilfreich für die Identifikation von Ausschlussgebieten. Neben dem "Informationssystem Oberflächennahe Geothermie für Baden-Württemberg (ISONG)" werden diese Daten über die zuständigen Wasserbehörden der Kommune und des Landkreises zur Verfügung gestellt.

## **Ergebnis**

Nach Aussage der Unteren Wasserbehörde im Landkreis Ludwigsburg ist es aufgrund stark variierender geologischer Bedingungen nicht möglich, eine allgemeine Aussage für Besigheim zu machen. Grundsätzlich ist im gesamten kommunalen Gebiet eine Nutzung des Grundwassers denkbar, aber eine Einzelprüfung mit einer Erkundungsbohrung und einem Pumpversuch am Standort erforderlich.

In der nachfolgenden Karte sind alle grundsätzlich geeigneten Gebiete für eine weitere Grundwassernutzung aufgeführt. Dies sind außerhalb der Wasser- und Quellenschutzzonen in Besigheim und sind auf nachfolgender Karte in grün gekennzeichnet. Aufgrund der oben beschriebenen Komplexität und fehlenden Projekttiefe der kommunalen Wärmeplanung wird kein Deckungspotenzial ausgewiesen.

Ingenieure aus
Leidenschaft
plan

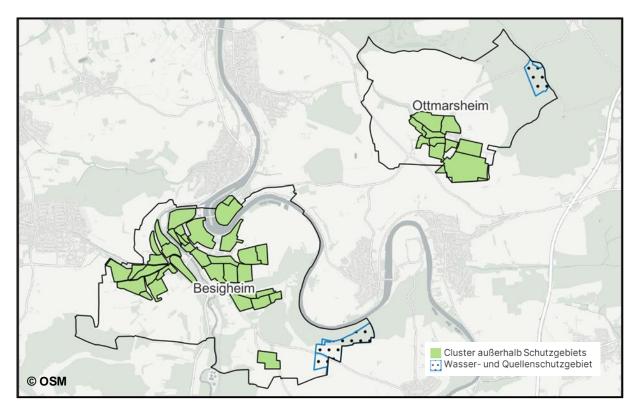



Abbildung 23: Potenzialkarte "Grundwasser" auf Clusterebene

#### 5.3.9 Seewasser

Das Wärmenutzungspotenzial von Oberflächengewässern wird separat für Fließgewässer und Seen ermittelt. Die Wärmenutzung aus Seewasser kann bei größeren Gewässern einen relevanten Beitrag für eine klimaneutrale Wärmenutzung einzelner Quartiere liefern.

Bei der Wärmenutzung aus Seewasser wird über eine zentrale Vorrichtung im oder am See Wasser entnommen und über Wärmetauscher für die Wärmeversorgung nutzbar gemacht. Das abgekühlte Seewasser wird im Anschluss wieder in das Gewässer eingeleitet. Die erschlossene Seewasserwärme kann mittels Großwärmepumpen für Wärmenetze aufbereitet werden oder für die Regeneration von kalten Wärmenetzen eingesetzt werden. Auf Grund des relativ hohen Erschließungsaufwands und des bei technischer Machbarkeit hohen Potenzials wird die Seewassernutzung im Rahmen der kommunalen Wärmeplanung stets in Kombination mit den aufgeführten zentralen Wärmeinfrastrukturen betrachtet.

#### Datengrundlage

Für die Bewertung des Seewasserpotenzials sind die Belange des Natur- und Umweltschutzes sowie der weiteren Nutzungen des Gewässers relevant. Die zuständigen Genehmigungsbehörden können erste Einschätzungen zur Seewassernutzung abgeben. Bei positiver Einschätzung werden in der Regel weitere hydrologische Untersuchungen erforderlich, um die technischen und genehmigungsrechtlichen Fragestellungen beantworten zu können. Zum Teil existieren für bestimmte Gewässer frei abrufbare Richtlinien, in denen

Projekt-Name: KWP Besigheim



die Seewassernutzung geregelt ist (z.B. Bodensee-Richtlinie der Internationalen Gewässerschutzkommission für den Bodensee (IGKB)).

### **Ergebnis**

Auf dem Kommunalgebiet liegt kein Potenzial für die Nutzung von Seewasserwärme vor.

### 5.3.10 Solarthermie - dezentral

Mittels Solarkollektoren (Solarthermie) wird solare Strahlungsenergie in nutzbare Wärme für die Brauchwassererwärmung, Heizung und Prozesswärme gewandelt. Bei der Konzeptionierung von Gebäuden mit Solarthermieanlagen ist darauf zu achten, dass die Anlagen möglichst nach Süden ausgerichtet sind. Die Neigung der Solarkollektoren liegt je nach Art der Anwendung idealerweise zwischen 30 und 60 Grad. Je steiler der Anstellwinkel, desto höher ist der Ertrag in der Übergangszeit und in den Wintermonaten.

Im Rahmen der Potenzialanalyse "Solarthermie - dezentral" werden die für die Solarenergie in Frage kommenden Dachflächen untersucht und quantitativ erfasst. Für die quantitative Ermittlung der geeigneten Dachflächen und des Wärmepotenzials wird auf das GIS-Angebot des Energieatlas Baden-Württemberg zurückgegriffen.

Die Daten des Energieatlas beinhalten gebäudescharfe Einordnungen der Dachflächen für die Solarenergienutzung. Die Eignungsklassen sind in die Kategorien sehr gut, gut und bedingt geeignet unterteilt. Die Eignung berücksichtigt die Neigung, Ausrichtung, Verschattung und solare Einstrahlung. In Abhängigkeit von der Eignungsklasse wird den Dachflächen ein flächenspezifischer Wärmeertrag zwischen 300 und 420 kWh/(m²·a) zugewiesen. Dieser wird mit der ebenfalls im Energieatlas verfügbaren potenziell nutzbaren Dachfläche aus Befliegungsdaten multipliziert, um das Solarthermiepotenzial zu berechnen.

Die Berechnung des resultierenden Wärmedeckungspotenzials je Gebäude im Zieljahr berücksichtigt die zeitliche Verfügbarkeit des Solarthermiepotenzials und die Verteilung des Wärmebedarfs auf Monatsebene.

# Datengrundlage

Das Solarthermiepotenzial auf Dachflächen wird auf Basis der Angaben des Solarkatasters des Energieatlas Baden-Württemberg ermittelt. Der Energieatlas und die hinterlegten GIS-Dateien sind im Internet abrufbar unter <a href="https://www.energieatlas-bw.de/sonne/dachflachen/solarpotenzial-auf-dachflachen">https://www.energieatlas-bw.de/sonne/dachflachen/solarpotenzial-auf-dachflachen</a>.

### **Ergebnis**

Die Analyse für das Potenzial "Solarthermie - dezentral" zeigt auf, dass im Zieljahr ein Wärmedeckungsanteil in Höhe von 17 % resultiert. Insgesamt können damit theoretisch rund 19.000 MWh/a für die Wärmebereitstellung in der Kommune angenommen werden.

Ingenieure aus
Leidenschaft
plan

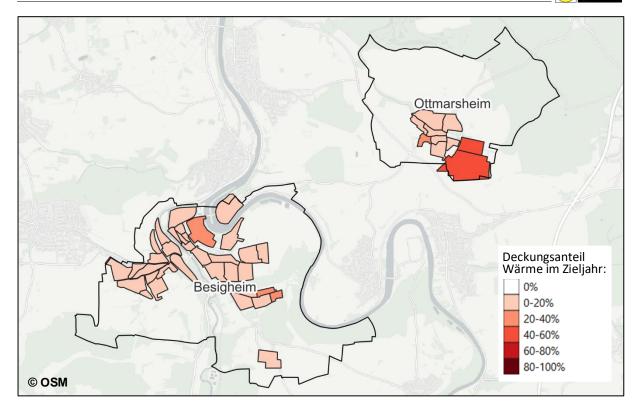



Abbildung 24: Potenzialkarte "Solarthermie - dezentral" auf Clusterebene

## 5.3.11 Solarthermie - zentral

Im Rahmen der kommunalen Wärmeplanung wird zusätzlich zur Solarenergie auf Dachflächen das Potenzial von Freiflächenanlagen untersucht. Zentrale Solarthermieanlagen können relevante Wärmemengen für Wärmenetze bereitstellen. Neben der Einspeisung in klassische Wärmenetze können Solarthermieanlagen im Kontext der Regeneration von kalten Wärmenetzen oder zum Beispiel von Erdwärmesonden eine besonders hohe Effizienz vorweisen. Die in den Sommermonaten hauptsächlich anfallenden Wärmeerträge können für erhöhte Wärmedeckungsanteile in Großspeichern bzw. saisonalen Wärmespeichern nutzbar gemacht werden. Die gespeicherte Wärme kann entweder direkt genutzt oder über Wärmepumpen auf das erforderliche Temperaturniveau des Wärmeverteilnetzes gebracht werden.

Für die Berechnung des Wärmedeckungspotenzials werden die Wärmebedarfe mit dem Bereitstellungspotenzial der Cluster bilanziell abgeglichen, die sich in räumlicher Nähe zu den geeigneten Freiflächen befinden. Auf Basis von Monatsbilanzen kann so der jeweiligen zeitlichen Charakteristika von Erzeugung und Bedarf Rechnung getragen werden.

# Datengrundlage

Die Vorgehensweise zur Ermittlung potenziell geeigneter Flächen für die Kategorie "Solarthermie - zentral" wird nachfolgend beschrieben. Zu Beginn werden die potenziellen Freiflächen ermittelt, welche grundsätzlich eine Eignung für Solarthermieanlagen vorweisen. Hierzu wird zunächst eine Positivauswahl aus dem digitalen Liegenschaftskataster getroffen.

Projekt-Name: KWP Besigheim



Die Auswahl erfolgt nach hinterlegten Nutzungen wie Brachland, Grünland, Unland und Ackerland. Ergänzend werden Konversionsflächen und Seitenrandstreifen (hier auch Ackerland unabhängig der Ertragsfähigkeit) aufgenommen. Anschließend werden Ausschlussflächen definiert und von der Positivauswahl abgezogen. Kriterien für die Definition von Ausschlussflächen sind u.a. Naturschutz und Landschaftsschutz, Bodendenkmäler, Grünzäsuren, Vorranggebiete für Siedlungsbau und Infrastruktur, Biosphärengebiete, Landschaftsschutzgebiete und Natura 2000 Gebiete (FFH-Gebiete). Die Grundlagen hierfür stammen aus den Flächennutzungsplänen, der Regionalplanung und kommunalen Bauleitplanungen. Zusätzlich wird als Bedingung gesetzt, dass sich die Freiflächen in räumlicher Nähe zu Clustern mit Wärmebedarf befinden und eine zusammenhängende Mindestgröße nicht unterschreiten.

In der anschließenden Priorisierung und Auswahl von Eignungsflächen werden bereits ackerbaulich genutzte Flächen oder die Lage innerhalb weicher Restriktionen (Naturschutzgebiete, die ggf. eine eingeschränkte Nutzung erlauben) niedriger priorisiert. Die resultierenden Flächen werden manuell geprüft und weitere Nutzungsmerkmale analysiert, die gegen eine Nutzung für das Potenzial "Solarthermie - zentral" sprechen. Zum Beispiel werden bei einer Analyse von Luftfotos Grünlandflächen identifiziert, auf denen sich erhaltenswerte Streuobstwiesen befinden. Diese Information ist in den genannten Planunterlagen nicht enthalten, führt aber aktuell zu einem Ausschlusskriterium bei diesem Anwendungsfall.

Eine detaillierte Auflistung der Flächennutzungskategorien und deren Einordnung als Ausschluss- und Eignungsflächen kann in Anhang 10.1 eingesehen werden.

Die verbliebenen Flächen werden in Abstimmung mit der Kommunalverwaltung für die Nutzung als Energieinfrastruktur dokumentiert und priorisiert. In Abbildung 25 sind die als geeignet identifizierten Freiflächen dargestellt.

Ingenieure aus
Leidenschaft
plan

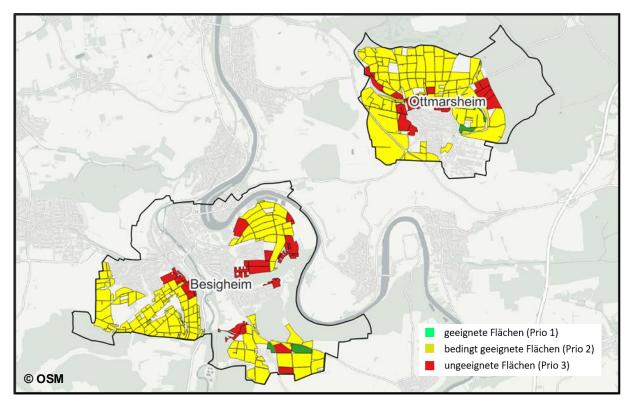



Abbildung 25: Eignungsflächen für das Potenzial "Solarthermie - zentral"

Die Ansätze für die Priorisierung der Freiflächen orientieren sich im Wesentlichen an der nachfolgendenden Auflistung. Die Flächenangaben zu diesen Potenzialflächen und die Einordnung zur gesamten Kommunalfläche sind in Tabelle 9 enthalten.

- 1. Geeignet: gute Lage; Industrienähe, Randstreifen, außerhalb von Schutzzonen (keine Einschränkungen zu erwarten), Nutzung mit geringem Aufwand möglich (kaum Bewuchs)
- 2. Bedingt geeignet: In Schutzzonen (Einschränkungen oder Auflagen zu erwarten), Nutzung mit Aufwand möglich (leichter Bewuchs), Ackernutzung
- 3. Ungeeignet: Nutzung nicht möglich (starker Bewuchs), aktuelle Flächennutzung bietet kein Potenzial (Neubaugebiet, Kleingärten, Streuobstwiesen, ...)

Tabelle 9: Priorisierungsergebnis des Freiflächenpotenzials "Solarthermie - zentral"

| Priorisierung | Fläche | Anteil an Fläche der Kommune |  |  |
|---------------|--------|------------------------------|--|--|
| 1             | 10 ha  | 0,6 %                        |  |  |
| 2             | 526 ha | 30,9 %                       |  |  |
| 3             | 119 ha | 7,0 %                        |  |  |
| Summe         | 655 ha | 38,4 %                       |  |  |

Ingenieure aus
Leidenschaft
plan

### **Ergebnis**

Die Analyse für das Potenzial zeigt auf, dass bei einer Vollbelegung der geeigneten und bedingt geeigneten Freiflächen mit solarthermischen Modulen ein theoretisches Potenzial von 1.100 GWh/a resultiert. Unter Berücksichtigung des nutzbaren Solarertrags der Anlagen zur Gebäudebeheizung wurden die Freiflächen auf 50 ha reduziert. Unter Berücksichtigung der saisonalen Abhängigkeit des Wärmeertrags und dem Einsatz eines Langzeitwärmespeichers wurde ein Wärmedeckungspotenzial im Zieljahr von 48 % analysiert. Insgesamt resultieren aus dem Einzelpotenzial "Solarthermie - zentral" theoretisch rund 53.800 MWh/a für die Wärmebereitstellung in der Kommune.

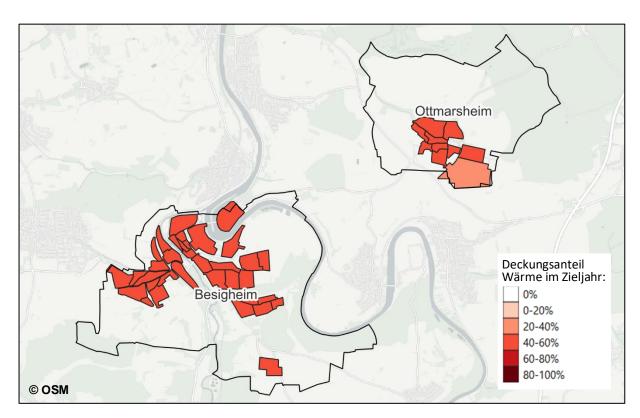



Abbildung 26: Potenzialkarte "Solarthermie - zentral" auf Clusterebene

## 5.3.12 Tiefengeothermie

Tiefengeothermie stellt die Nutzung von Erdwärme in Tiefen von mehr als 400 Metern dar. Wärmereservoire in mehreren tausend Metern Tiefe werden dabei erschlossen. Aufgrund des relativ hohen Temperaturniveaus gegenüber der oberflächennahen Geothermie kann die Wärme sowohl für größere Wärmenetze als auch für die Erzeugung von Strom eingesetzt werden.

Im Rahmen der kommunalen Wärmeplanung in Baden-Württemberg kann ein Nutzungspotenzial der Tiefengeothermie ohne detaillierte Informationen zur thermodynamischen Leistungsfähigkeit des Untergrunds nur grob eingeordnet werden.

Projekt-Name: KWP Besigheim



Grundsätzlich gilt die Einordnung des Landesamtes für Geologie, Rohstoffe und Bergbau (LGRB) für Baden-Württemberg. "Für die Nutzung der tiefen Geothermie bieten sich in Baden-Württemberg vor allem der Oberrheingraben und das Molassebecken an. In diesen Gebieten liegen sogenannte positive Temperaturanomalien vor, d. h. in der Tiefe werden deutlich höhere Temperaturen angetroffen als im restlichen Baden-Württemberg. Daneben haben topografische Höhenunterschiede, wie zwischen Schwarzwald und Oberrheingraben, signifikante Auswirkungen auf die Temperaturverteilung im Untergrund. Dort führen aus größerer Tiefe aufsteigende Thermalwässer (z. B. Baden-Baden) zu erhöhten Temperaturen in ihrem weiteren Umfeld. Auch südöstlich von Stuttgart (Bereich Bad Urach-Bad Boll) sind die Untergrundtemperaturen erhöht. Die äußerst vielfältige Geologie von Baden-Württemberg führt zu einer unterschiedlichen räumlichen Verteilung der Wärmeleitfähigkeit und damit der Temperatur im Untergrund des Landes." (Landesamt für Geologie, 2023)

## Datengrundlage

Die Bewertung des Tiefengeothermie-Potenzials beschränkt sich daher im Rahmen der vorliegenden Analyse auf Informationen des LGRB-Kartenviewers der großflächige Untergrundtemperaturverteilungen in Tiefen von 500 bis 2.500 m beinhaltet (Im Internet unter: <a href="https://maps.lgrb-bw.de/?app=lgrbwissen&view=Geothermie\_Uebersicht\_BW\_500\_m">https://maps.lgrb-bw.de/?app=lgrbwissen&view=Geothermie\_Uebersicht\_BW\_500\_m</a>).

Liegen im räumlichen Kontext der Kommune Temperaturanomalien im Untergrund vor, so wird ein Potenzial als vorhanden eingestuft und eine weitere qualifizierende Erkundung und Bewertung des Nutzungspotenzials empfohlen.

## **Ergebnis**

Der LGRB-Kartenviewer weist für das Kommunalgebiet keine besonderen Temperaturanomalien im Untergrund aus. Die Abbildung 27 und Abbildung 28 zeigen die konkreten Untergrundtemperaturen im Vergleich zur überregionalen Verteilung.



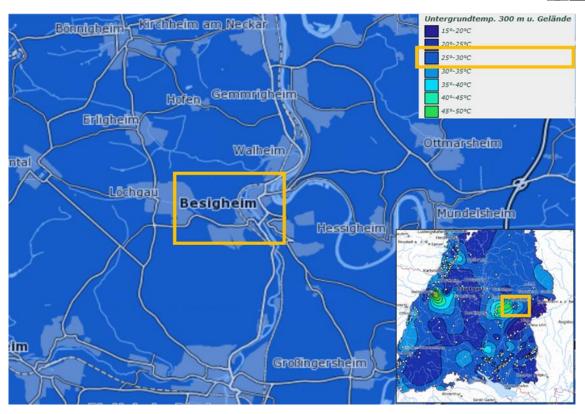



Abbildung 27: Potenzialkarte "Tiefengeothermie" in 500 m

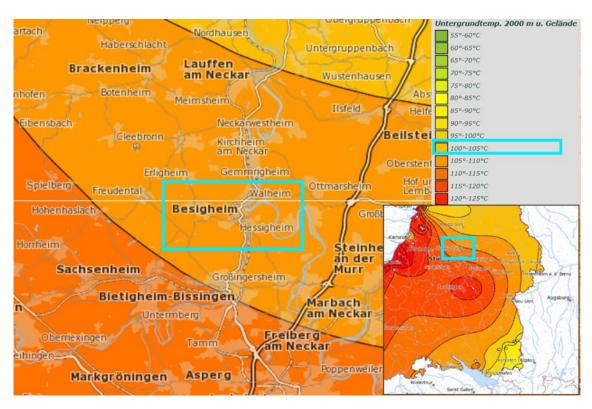



Abbildung 28: Potenzialkarte "Tiefengeothermie" in 1.000 m

Projekt-Name: KWP Besigheim



### 5.3.13 Ortsunabhängige Nutzungspotenziale für klimaneutrale Wärme

Ergänzend werden auch im Rahmen der kommunalen Wärmeplanung die Nutzungspotenziale von Wärmequellen und Energieträgern betrachtet, die in der Regel ortsunabhängig für eine klimaneutrale Wärmeversorgung Verwendung finden können. Darunter fallen im Wesentlichen die Außenluft, Biomasse sowie "Grüne Gase". Der Umgang mit diesen Optionen wird in den folgenden Abschnitten näher beschrieben.

#### 5.3.13.1 Außenluft

Wärmepumpen mit der Wärmequelle Außenluft erfordern in der Regel den geringsten technischen Aufwand und sind fast an jedem Standort einsetzbar. Die Außenluft-Wärmepumpen können dabei in Luft/Luft- und Luft/Wasser-Systeme unterteilt werden. Bei diesen Systemen wird der Außenluft Wärme entzogen. In einem thermodynamischen Kreisprozess wird die Wärme von einem niedrigen (Außenluft) auf ein höheres (Heizwärme) Temperaturniveau gehoben. Der Anteil der Luft/Wasser-Wärmepumpen an bestehenden Wärmepumpen liegt in Deutschland nach Auswertungen des Bundesverbands Wärmepumpe bei über 50 Prozent. (Fisch, et al., 2018)

Luft/Wasser-Wärmepumpen können Heizwärme bei Außenlufttemperaturen von bis zu – 20 Grad Celsius bereitstellen. Je niedriger die Wärmequellentemperatur, desto niedriger die Effizienz (d. h., die Arbeitszahl sinkt und der Strombedarf steigt). Speziell bei größeren Wärmebedarfen kommen bivalente Systeme zum Einsatz.

Im Rahmen der Potenzialermittlung und Zielszenario-Erstellung der kommunalen Wärmeplanung wird grundsätzlich von einer technischen Machbarkeit zur Nutzung von Außenluft als Wärmequelle ausgegangen. Lediglich Cluster mit einer hohen baulichen Dichte, z.B. in einem hochverdichteten Innenstadtbereich, oder mit hohen Prozesstemperaturanwendungen werden so kategorisiert, dass hier kein Potenzial zur Nutzung von Außenluft-Wärmepumpen berücksichtigt wird.

Der wesentliche Grund hierfür ist, dass für die Aufstellung der Geräte Flächen auf Gebäuden oder im Außenraum erforderlich werden und bei der Anordnung von Ansaug- und Ausblasöffnungen im Umfeld von Gebäuden die Geräuschentwicklungen zu berücksichtigen sind.

#### 5.3.13.2 Biomasse

Die Möglichkeiten zur Nutzung von pflanzlicher Biomasse zeigen eine große Bandbreite auf. Im Rahmen der kommunalen Wärmeplanung liegen die pflanzlichen Biomassepotenziale im Fokus. Für die Land- und Forstwirtschaft werden nachfolgend die ermittelnden Potenziale auf den Acker-, Grünland- und Waldflächen dargestellt.

Projekt-Name: KWP Besigheim



#### Biomasse aus der Landwirtschaft

Auf dem Gemarkungsgebiet der Kommune existieren laut Flurstücks-Definition, 619 ha Ackerland und 198 ha Grünland. Diese Flächen entsprechen rund 48 % des gesamten Gemarkungsgebiets. Für die Ermittlung des Energiepotenzials landwirtschaftlicher Biomasse wird davon ausgegangen, dass die angebaute Biomasse in einer Biogasanlage zu Biogas verarbeitet wird. In der Berechnung wird unter Berücksichtigung eines Flächen- und Biogasertrags in Abhängigkeit der Pflanzensorte der potenzielle Energieertrag ermittelt. Dabei wird berücksichtigt, dass nur ein Teil der landwirtschaftlich genutzten Flächen für den Anbau von Energiepflanzen mobilisiert werden kann. Für die analysierten Flächen resultiert dabei ein theoretisches Energieerzeugungspotenzial in Höhe von 4.957 MWh/a.

#### Biomasse aus der Forstwirtschaft

Auf dem Kommunalgebiet existieren Waldflächen von rund 122 ha. Im Rahmen der Wärmeplanung wird lediglich Waldrestholz für die Ermittlung des Energiepotenzials berücksichtigt. Unter der Annahme, dass der Flächenertrag an Waldrestholz 1,5 t/ha beträgt und ein Mobilisierungsfaktor von 80 % angenommen, resultiert ein Energiepotenzial des Holzes in Höhe von 504 MWh/a.

## Gesamtergebnis

In Abbildung 29 sind die Flächen sowie deren räumliche Verteilung zur Mobilisierung des Biomassepotenzials aufgezeigt. Das gesamte Wärmenutzungspotenzial aus dieser Analyse beträgt rund 7.000 MWh/a. Im Basisjahr wird bereits eine Menge von rund 13.000 MWh/a im Wärmesektor verwendet.

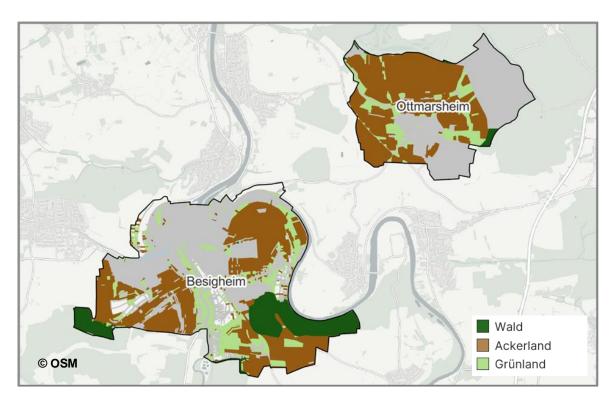



Abbildung 29: Karte der Biomasse Potenzialflächen

Projekt-Name: KWP Besigheim



# **5.3.13.3 Grüne Gase**

Der Energieträger "Grüne Gase" steht vereinfacht für klimaneutrale, gasförmige Energieträger, die in der Regel in Verbrennungsprozessen in Heizungsanlagen und bei Prozessanlagen zur Wärmebereitstellung zum Einsatz kommen können. Darunter fallen die Kategorien Biogas, Biomethan, grüner Wasserstoff oder auch generell synthetisch erzeugte Gase, welche auf Basis von erneuerbaren Energien hergestellt wurden.

"Grüne Gase" können sowohl lokal auf dem Kommunalgebiet erzeugt oder perspektivisch über die vorgelagerte Gasinfrastruktur bezogen werden. Durch die Annahme, dass zukünftig grüne Gase überregional zur Verfügung stehen, kann dieser Energieträger grundsätzlich auch als nicht-lokale Ressource eingestuft werden.

Damit können grüne Gase per Definition ortsunabhängig für eine klimaneutrale Wärmeversorgung Verwendung finden. Für eine positive Berücksichtigung im Rahmen der Potenzialbetrachtung und Nutzungsbewertung für den Zielszenarioprozess gilt lediglich die Einschränkung, dass eine bestehende Gasinfrastruktur im jeweiligen Cluster bereits vorliegen muss.

Gemäß dem technischen Annex der Kommunalrichtlinie<sup>5</sup> (Nationale Klimaschutzinitiative vom 18. Oktober 2022) sind grüne Gase effizient und ressourcenschonend nur dort in der Wärmeversorgung einzuplanen und einzusetzen, wo vertretbare Alternativen fehlen. Gemäß dieser Logik finden im Zielszenario die grünen Gase unter folgenden Randbedingungen Berücksichtigung:

- Keine Verfügbarkeit ausreichender lokaler Potenziale erneuerbarer Energien und Abwärmepotenziale im Cluster
- Anforderungen von Clustern mit Hochtemperaturwärmeanwendungen oder Gasverbrennungsprozessen in der Industrie
- Spitzenlastbereitstellung bei größeren Verbrauchern und Heizzentralen erforderlich
- Gasnetzinfrastruktur liegt vor

Sind die obig aufgeführten Kriterien erfüllt, wird im weiteren Zielszenarienprozess abgewägt, ob eine Nutzung von grünen Gasen auf Ebene der Cluster als Nutzungsoption in Frage kommt.

### 5.3.14Potenzial für Wärme aus Kraft-Wärme-Kopplung

Der Kraft-Wärme-Kopplung (KWK) kommt bei der Energiewende eine besondere Rolle zu: "[...] Kraft-Wärme-Kopplungs-Anlagen sind im Vergleich zu Anlagen der ungekoppelten Erzeugung effizienter, weil sie neben Strom auch Wärme produzieren. Die bei der Herstellung von Strom entstehende Wärme wird als Wärmeenergie für öffentliche und private Verbraucher genutzt. Der eingesetzte Brennstoff wird damit effizienter und sparsamer verwendet. [...]"6

<sup>5</sup>Im Internet unter: https://www.klimaschutz.de/de/foerderung/foerderprogramme/kommunalrichtlinie (02.03.2023)

<sup>&</sup>lt;sup>6</sup> Im Internet unter: <a href="https://www.bmwk.de/Redaktion/DE/Artikel/Energie/moderne-kraftwerkstechnologien.html">https://www.bmwk.de/Redaktion/DE/Artikel/Energie/moderne-kraftwerkstechnologien.html</a> (12.06.2024)

Projekt-Name: KWP Besigheim



Geeignete Einsatzbereiche von kleinen und mittleren KWK-Anlagen liegen besonders bei Anwendungsfällen mit ganzjährig hohem Wärmebedarf und in denen eine hohe Stromeigennutzung möglich ist. Klassischerweise handelt es sich um Verbraucher aus den Bereichen Kliniken, Bäder, Gastronomie und Hotels sowie um geeignete Verbraucher im Bereich Gewerbe, Industrie als auch Gebäude- und Wärmenetze.

Die KWK-Technologie befindet sich dabei an der Schnittstelle zwischen Strom- und Wärmemarkt. Beide Sektoren sind im Kontext der Energiewende in den nächsten Jahrzehnten immer stärker zusammen zu denken.

KWK-Anlagen werden in Zukunft vermehrt stromnetzdienlich betrieben. Da der in der Vergangenheit übliche wärmegeführte Betrieb von KWK-Anlagen aufgrund der zunehmenden fluktuierenden Stromerzeugung mit Wind und PV nicht in der Breite sinnvoll ist, werden voraussichtlich die KWK-Anlagen von vornherein flexibel, das heißt ausgerichtet auf den Bedarf und die variablen Strompreise im Stromnetz, betrieben.

Das Potenzial für Kraft-Wärme-Kopplung wird im Rahmen der kommunalen Wärmeplanung nicht räumlich hochaufgelöst quantifiziert. Die Einsatzmöglichkeiten und Aussagen zur Sinnhaftigkeit variieren im konkreten Projektumfeld stark und können mit der strategischen Wärmeplanung nicht vertieft werden.

Daher kann lediglich ein theoretisches Potenzial für Wärme aus der KWK mit einem vereinfachten Ansatz ermittelt werden. Zieljahr beträgt der Wärmebedarf lm (Erzeugernutzenergieabgabe) für "Gesundheit die Sektoren und Verarbeitendes Gewerbe/Industrie und GHD" 40 GWh/a und für die Wohn- und Mischnutzung 55 GWh/a. Unter der Annahme, dass von diesen Objekten rund 50 % ein Potenzial für eine KWK-Nutzung haben resultiert ein Wärmepotenzial aus KWK von bis zu 24 GWh/a zur Bedarfsdeckung im Zieljahr (Pauschale Annahme: 50 % der Verbraucher geeignet; 50 % dieser Wärmemenge in den Versorgungsobjekten durch KWK)

### 5.4 Potenziale für erneuerbare Stromerzeugung

Für die Ziele einer klimaneutralen Wärmeversorgung nimmt der Stromsektor in Zukunft eine zunehmend wichtigere Rolle ein. Zahlreiche Studien belegen den erforderlichen Ausbau von Wärmepumpen für eine flächendeckende, klimaneutrale Wärmeversorgung in zentralen und dezentralen Systemen. Wärme aus Wärmepumpen hat einen besonders hohen Klimaschutzbeitrag, wenn der dafür eingesetzte Strom aus erneuerbaren Energien stammt. Ebenso erfordert der Ersatz gasförmiger Brennstoffe durch "... Wasserstoff und daraus gewonnene gasförmige und flüssige synthetische Energieträger ..." (Peters, Steidle, & Böhnisch, 2020) signifikante Mengen erneuerbaren Stroms. Die Aufgabe im Rahmen der kommunalen Wärmeplanung besteht darin, die erneuerbaren Stromerzeugungspotenziale zu bewerten, um auf dieser Basis die zukünftigen Ausbaupfade ableiten zu können.

Potenziale zur Nutzung von Photovoltaik, Wasserkraft und Windkraft sind daher Betrachtungsgegenstand der kommunalen Wärmeplanung in Baden-Württemberg. Diese sind in den nachfolgenden Abschnitten näher beschrieben.

Projekt-Name: KWP Besigheim



#### 5.4.1 Photovoltaik – dezentral

Die Photovoltaik-Nutzung auf einzelnen Gebäuden bietet eine sehr effiziente und einfache Möglichkeit zur Kopplung der Sektoren Wärme und Strom. Photovoltaik (PV) steht für die Erzeugung von Solarstrom durch Photovoltaik-Module. Klassischerweise werden hierzu PV-Module auf Dächern montiert. Der erzeugte Strom kann direkt im Gebäude genutzt oder in das öffentliche Stromnetz eingespeist werden. Bei einer Direktnutzung des Stroms kann damit auch eine Wärmepumpe mitversorgt und damit aus erneuerbarem Strom klimaneutrale Wärme erzeugt werden. Aufgrund der tageszeitlichen und saisonalen Erzeugungscharakteristik von PV kann speziell in den Zeiten mit hohem Wärmebedarf im Winter in der Regel nur ein kleiner Teil des Wärmepumpenstroms über die eigene PV-Erzeugung bereitgestellt werden.

Im Rahmen der Potenzialanalyse "Photovoltaik – dezentral" werden die für die Photovoltaik-Module in Frage kommenden Dachflächen untersucht und quantitativ erfasst. Für die quantitative Ermittlung der geeigneten Dachflächen und des Strompotenzials wird auf das GIS-Angebot des Energieatlas Baden-Württemberg zurückgegriffen.

Die Daten des Energieatlas beinhalten gebäudescharfe Einordnungen der Dachflächen für die Solarenergienutzung. Die Eignungsklassen sind in die Kategorien sehr gut, gut und bedingt geeignet unterteilt. Die Eignung berücksichtigt die Neigung, Ausrichtung, Verschattung und solare Einstrahlung. In Abhängigkeit von der Eignungsklasse wird den Dachflächen ein leistungsspezifischer Stromertrag zwischen 750 und 1.000 kWh/kWp zugewiesen.

Die maximal installierbare Leistung an Photovoltaik-Modulen wird anhand der potenziell nutzbaren Dachfläche aus dem digitalen Liegenschaftskataster und einem spezifischen Flächenbedarf (5 m²/kW<sub>p</sub>) der Photovoltaik-Module bestimmt.

Das PV-Potenzial resultiert aus der Multiplikation der maximal installierbaren Leistung an Photovoltaik-Modulen und dem leistungsspezifischen Stromertrag.

### Datengrundlage

Das PV-Potenzial auf Dachflächen wird auf Basis der Angaben des Solarkatasters des Energieatlas Baden-Württemberg ermittelt. Der Energieatlas und die hinterlegten GIS-Dateien sind im Internet abrufbar unter <a href="https://www.energieatlas-bw.de/sonne/dachflachen/solarpotenzial-auf-dachflachen">https://www.energieatlas-bw.de/sonne/dachflachen/solarpotenzial-auf-dachflachen</a>.

#### **Ergebnis**

Die Analyse für das Potenzial "Photovoltaik – dezentral" zeigt auf, dass in Summe eine Leistung von 45 MW $_{\rm p}$  an Photovoltaik-Modulen auf den Dachflächen installiert werden kann. Unter Berücksichtigung der Eignungsklasse der Dachflächen resultiert ein jährlicher Stromertrag von rund 52.600 MWh/a. Im Basisjahr sind in Besigheim bereits 6.648 kW $_{\rm p}$  installiert.

Projekt-Name: KWP Besigheim



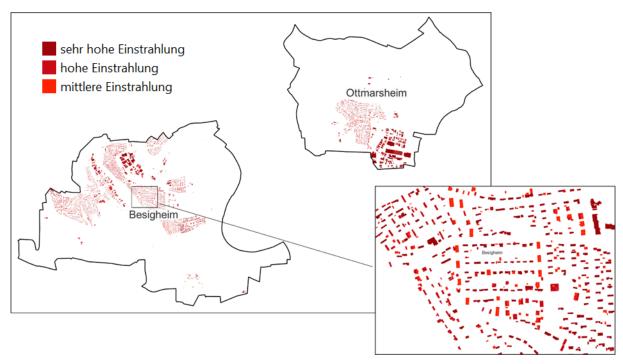



Abbildung 30: Potenzialkarte "Photovoltaik – dezentral" auf Gebäudeebene (Einstufung nach Energieatlas BW)

#### 5.4.2 Photovoltaik - zentral

Neben der Photovoltaik-Nutzung auf Dachflächen, wird auch das Ertragspotenzial für PV auf Freiflächen untersucht. PV-Anlagen auf Freiflächen erreichen hohe Erzeugungsleistungen, deren Erträge üblicherweise direkt ins Stromnetz eingespeist werden. In räumlicher Nähe zu Heizzentralen für Wärmenetze kann eine PV-Freifläche auch zur direkten Versorgung einer zentralen Wärmepumpe genutzt werden.

Neben einer klassischen, ertragsoptimierten Aufständerung sind auch abweichende Variationen möglich, um kombinierte Flächennutzungen zu begünstigen. So kann auf Nutzungskonflikte speziell auf einer landwirtschaftlich genutzten Fläche eingegangen werden. Je nach Kultur (z.B. Beeren, Obst, Gemüse) können verschiedene Synergien erzeugt werden. Neben der überdachenden Bauweise sind auch vertikal aufgestellte, bifaziale PV-Wände eine Möglichkeit, Flächennutzungen zu vereinen.

## Datengrundlage

Die Vorgehensweise zur Ermittlung potenziell geeigneter Flächen für die Kategorie "Photovoltaik – zentral" entspricht weitestgehend derer, für "Solarthermie - zentral". Zu Beginn werden die potenziellen Freiflächen ermittelt, welche grundsätzlich eine Eignung für Solaranlagen vorweisen. Hierzu wird zunächst eine Positivauswahl aus dem digitalen Liegenschaftskataster getroffen. Die Auswahl erfolgt nach hinterlegten Nutzungen wie Brachland, Grünland, Unland und Ackerland (hier nur schwach ertragfähige landwirtschaftliche Flächen). Ergänzend werden Konversionsflächen und Seitenrandstreifen (hier auch Ackerland unabhängig der Ertragsfähigkeit) aufgenommen. Anschließend werden Ausschlussflächen

Projekt-Name: KWP Besigheim



definiert und von der Positivauswahl abgezogen. Kriterien für die Definition von Ausschlussflächen sind u.a. Naturschutz und Landschaftsschutz, Bodendenkmäler, Grünzäsuren, Vorranggebiete für Siedlungsbau und Infrastruktur, Biosphärengebiete, Landschaftsschutzgebiete und Natura 2000 Gebiete (FFH-Gebiete). Die Grundlagen hierfür stammen aus den Flächennutzungsplänen, der Regionalplanung und kommunalen Bauleitplanungen. Zusätzlich wird als Bedingung gesetzt, dass die Freiflächen eine zusammenhängende Mindestgröße nicht unterschreiten.

In der anschließenden Priorisierung und Auswahl von Eignungsflächen werden bereits ackerbaulich genutzte Flächen oder die Lage innerhalb weicher Restriktionen (Naturschutzgebiete, die ggf. eine eingeschränkte Nutzung erlauben) niedriger priorisiert. Die resultierenden Flächen werden manuell geprüft und weitere Nutzungsmerkmale analysiert, die gegen eine Nutzung für das Potenzial "Photovoltaik – zentral" sprechen. Zum Beispiel werden bei einer Analyse von Luftfotos Grünlandflächen identifiziert, auf denen sich erhaltenswerte Streuobstwiesen befinden. Diese Information ist in den genannten Planunterlagen nicht enthalten, führt aber aktuell zu einem Ausschlusskriterium bei diesem Anwendungsfall.

Eine detaillierte Auflistung der Flächennutzungskategorien und deren Einordnung als Ausschluss- und Eignungsflächen kann in Anhang 10.1 eingesehen werden.

Die verbliebenen Flächen werden in Abstimmung mit der Kommunalverwaltung für die Nutzung als Energieinfrastruktur dokumentiert und priorisiert. In Abbildung 31 sind die als geeignet identifizierten Freiflächen dargestellt.

### **Ergebnis**

Die Analyse für das Potenzial zeigt auf, dass ein Stromerzeugungspotenzial in Höhe von 606 GWh/a im Falle einer Südaufständerung und 712 GWh/a im Falle einer Ost-West-Aufständerung resultiert.



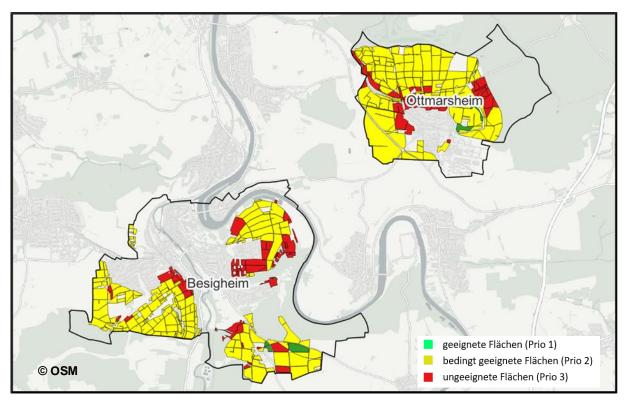



Abbildung 31: Potenzialkarte Freiflächen "Photovoltaik – zentral"

Die Ansätze für die Priorisierung der Freiflächen orientieren sich im Wesentlichen an der nachfolgendenden Auflistung. Die Flächenangaben zu diesen Potenzialflächen und die Einordnung zur gesamten Kommunalfläche sind in Tabelle 10 enthalten.

- Geeignet: Außerhalb von Schutzzonen (keine Einschränkungen zu erwarten), Nutzung mit geringem Aufwand möglich (kaum Bewuchs)
- 2. Bedingt geeignet: In Schutzzonen (Einschränkungen oder Auflagen zu erwarten), Nutzung mit Aufwand möglich (leichter Bewuchs)
- 3. Ungeeignet: Nutzung nicht möglich (starker Bewuchs), aktuelle Flächennutzung bietet kein Potenzial (Neubaugebiet, Kleingärten, Streuobstwiesen, ...)

Tabelle 10: Priorisierungsergebnis des Freiflächenpotenzials "Photovoltaik – zentral"

| Priorisierung | Summe  | Anteil an Fläche der Kommune |
|---------------|--------|------------------------------|
| 1             | 10 ha  | 0,6 %                        |
| 2             | 537 ha | 31,5 %                       |
| 3             | 119 ha | 7,0 %                        |
| Summe         | 666 ha | 39,1 %                       |

Projekt-Name: KWP Besigheim



#### 5.4.3 Windkraft

Die Bedeutung von Windkraft bei der Stromerzeugung hat in den letzten Jahren deutlich zugenommen. Heute stellt die Windkraft mit rund 58 GW installierter Leistung (Ende 2022), zusammen mit der Photovoltaik, den größten Teil der installierten Kraftwerkskapazität erneuerbarer Energien in Deutschland. Windenergie liefert bereits heute etwa 22 Prozent des erzeugten Stroms.<sup>7</sup>

Im Gegensatz zu den Photovoltaikanlagen erzeugen Windkraftanlagen auch während der Heizperiode nennenswerte Strommengen. Speziell im Hinblick auf die sektorenübergreifende Energiewende ist der flächendeckende Ausbau der Windkraft von besonderer Bedeutung.

Im Rahmen der kommunalen Wärmeplanung in Baden-Württemberg kann das Nutzungspotenzial der Windkraft, ohne auf weitere detaillierte Informationen zu den örtlichen Gegebenheiten einzugehen, grob evaluiert werden.

### Datengrundlage

Maßgebend zur Einordnung potenziell geeigneter Freiflächen dienen die Daten- und Kartendienste der Landesanstalt für Umwelt Baden-Württemberg (LUBW). Hier werden zum einen die Bestandswindenergieanlagen mit mehr als 50 Meter Gesamthöhe in Baden-Württemberg dargestellt. Zum anderen werden Informationen aus dem Windatlas Baden-Württemberg in Form von Windpotenzialflächen in Bezug auf die Windhöffigkeit geeigneter Flächen wiedergegeben. Der Windatlas wurde im Mai 2019 durch das Ministerium für Umwelt, Klima und Energiewirtschaft veröffentlicht und dient als umfassende Datengrundlage, um die Planungen von Windkraftanlagen mit einer verbesserten Informationsgrundlage zu unterstützen. Die LUBW unterscheidet weiter zwischen geeigneten Flächen mit und ohne Flächenrestriktionen. Die identifizierten Flächen werden im Rahmen der Erarbeitung der kommunalen Wärmeplanung ausgewiesen. Eine genaue Ermittlung des lokalen Windpotenzials und des daraus abgeleiteten Stromerzeugungspotenzials kann nur im Rahmen einer konkreten Projektprüfung bzw. -planung erfolgen.

-

<sup>&</sup>lt;sup>7</sup> Im Internet unter: https://www.bmwk.de/Redaktion/DE/Dossier/erneuerbare-energien.html (02.03.2023)

Projekt-Name: KWP Besigheim



### **Ergebnis**

Die Analyse für das Potenzial zeigt auf, dass keine Freiflächen auf Besigheimer Gemarkung für die Windkraft als geeignet eingestuft sind. In Abbildung 32 ist ein Auszug von der LUDW-Potenzialkarte dargestellt.



Abbildung 32: "Windkraft"- Potenzial aus Energieatlas BW

#### 5.4.4 Wasserkraft

Wasserkraft gehört mit einem Anteil von 8 % an der Bruttostromerzeugung im Jahr 2022 zusammen mit der Windenergie und der Photovoltaik zu den bedeutendsten erneuerbaren Energiequellen in Baden-Württemberg.<sup>8</sup>

Die Erzeugung von Strom mittels Wasserkraft ist in Deutschland breit etabliert. An Fließgewässern oder aus höhergelegene Wasserreservoirs wird die Strömungsenergie von fließendem Wasser genutzt, um Turbinen anzutreiben und Strom zu generieren. Die

<sup>&</sup>lt;sup>8</sup> Im Internet unter: https://www.energieatlas-bw.de/wasser/hintergrundinformationen (17.06.2024)

Ingenieure aus
Leidenschaft
plan

Erzeugung von Strom aus Wasserkraft ist sehr effizient und kann in der Regel ganzjährig erfolgen.

## Datengrundlage

Die Bestimmung des technischen Potenzials basiert auf den Daten des Energieatlas Baden-Württemberg. Der Kartendienst beinhaltet das mögliche Aus- und Neubaupotenzial an bereits genutzten Wasserkraftstandorten mit einer Leistung zwischen 8 kW und 1 MW sowie das Wasserkraftpotenzial an bislang noch nicht für die Erzeugung von Strom aus Wasserkraft genutzten Querverbauungen (Regelungs- und Sohlenbauwerke).<sup>9</sup>

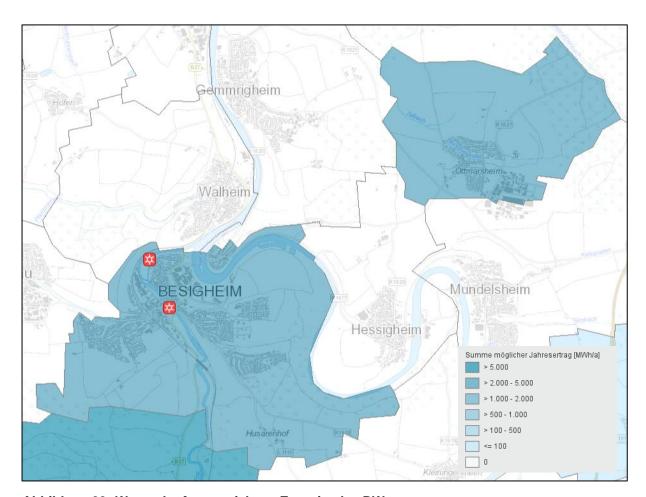



Abbildung 33: Wasserkraftpotenzial aus Energieatlas BW

### **Ergebnis**

Auf dem Kommunalgebiet ist der Zubau von Laufwasserkraftanlagen und Pumpspeicherkraftwerken möglich. Die Enz bietet ein Potenzial für die Stromerzeugung aus Wasserkraft. Die Analyse für das Potenzial zeigt auf, dass laut LUBW zwei zusätzliche

<sup>9</sup> Im Internet unter: https://www.energieatlas-bw.de/wasser/ermitteltes-wasserkraftpotenzial (17.06.2024)

Projekt-Name: KWP Besigheim



Anlagen für die Stromerzeugung möglich sind. Für diese Anlagen wird eine installierbare Leistung von rund 650 kW angegeben, was einen möglichen Jahresertrag von 3.150 MWh/a entspricht.

# 5.5 Übersicht der Potenzialanalyse-Ergebnisse

In den vorangegangenen Kapiteln sind die Einzelpotenziale für die Bereitstellung klimaneutraler Wärme und erneuerbarer Stromerzeugung erläutert. Für das gesamte Kommunalgebiet liegt damit eine mengenmäßige und räumliche Aussage zu den möglichen Wärmedeckungsbeiträgen der Einzelpotenziale vor.

# Hauptergebnisse

Durch Sanierung und Effizienzsteigerung reduziert sich der jährliche Wärmebedarf gemäß dem Leitzszenario gegenüber dem Basisjahr um 27 % auf 105 GWh/a im Zieljahr.

Die Wärmedeckungspotenziale liegen besonders im Bereich der Flusswasserwärme, der Erdwärme, dezentralen Solarthermie, wobei hier die Flächenkonkurrenz zur Dachflächennutzung für Photovoltaik besteht, und zentralen Solarthermie. Weiteres Potenzial ist im Bereich des Abwassers zu erwarten.

Die Übersicht in Abbildung 34 stellt die Potenziale im Bereich Wärme nochmals übersichtlich im Vergleich gegenüber. In Tabelle 11 sind die Ergebnisse ergänzend zusammengefasst.

Tabelle 11: Übersicht Wärmepotenziale im Zieljahr

|                                 | Wärmepotenzial<br>in GWh/a | Potenzieller<br>Deckungsanteil in % |
|---------------------------------|----------------------------|-------------------------------------|
| Abwärme – Industrie und Gewerbe | 0                          | 0%                                  |
| Abwasser – Kanal                | 0,3                        | 0,3%                                |
| Abwasser – Kläranlage           | 3                          | 3%                                  |
| Biomasse                        | 7                          | 6%                                  |
| Flusswasser                     | 23                         | 21%                                 |
| Geothermie – Kollektoren        | 56                         | 49%                                 |
| Geothermie – Sonden dezentral   | 55                         | 49%                                 |
| Geothermie – Sonden zentral     | 66                         | 59%                                 |
| Grundwasser                     |                            | Einzelfallprüfung                   |
| Seewasser                       | -                          | 0%                                  |
| Solarthermie – dezentral        | 19                         | 17%                                 |
| Solarthermie – zentral          | 54                         | 49%                                 |
| Tiefengeothermie                |                            | Keine Aussage                       |



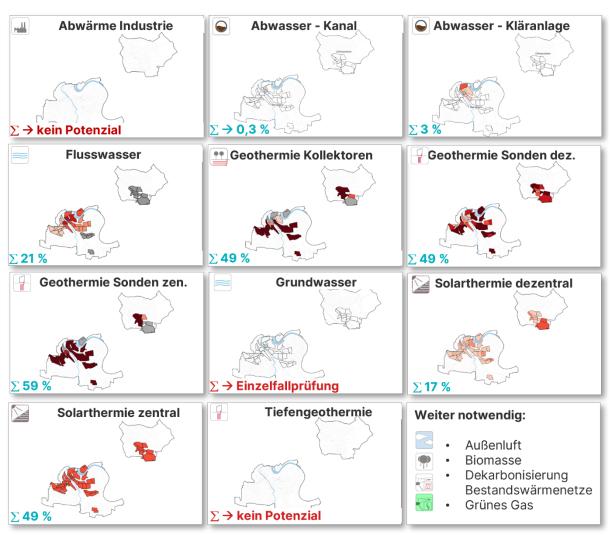



Abbildung 34: Übersicht der Einzelpotenziale zur Bedarfsdeckung im Bereich Wärme

Projekt-Name: KWP Besigheim



### 6 Zielszenario

# 6.1 Ziele und Vorgehensweise

Für die kommunale Wärmeplanung gibt das Klimaschutzgesetz das Ziel einer klimaneutralen Wärmeversorgung bis 2040 vor. Im Schritt der Zielszenario-Erstellung wird auf Basis der Erkenntnisse aus der Bestands- und Potenzialanalyse ausgearbeitet, mit welchen Energieträgern und Versorgungssystemen eine klimaneutrale Wärmeversorgung erreicht werden kann.

Auf Clusterebene wird zunächst bewertet, welche Potenziale in welchem Umfang zur Verfügung stehen, welches Versorgungssystem aktuell vorhanden und potenziell möglich ist. Die Eignungseinstufung der Versorgungssysteme hängt dabei von unterschiedlichen Kriterien ab. In Kapitel 4.4 sind die Methoden und Ergebnisse der Eignungsprüfung von Teilgebieten für die Versorgung über Wärme- und Wasserstoffnetze beschrieben. Grundsätzlich werden je Cluster die zur Verfügung stehenden Versorgungssysteme und Energiequellen mithilfe einer multikriteriellen Matrix bewertet. Die Priorisierung und Definition der Zielszenarien erfolgten in Abhängigkeit von den nachfolgenden Kriterien:

- Einzelpotenziale der Energieträger zur Bedarfsdeckung
- Erschließungsaufwand und Realisierungsrisiken
- THG-Einsparpotenzial
- Wärmedichte
- Kühlbedarf im Cluster
- Flächenbedarf der Infrastruktur
- Hochtemperaturbedarfe in Gebäuden

Nach der automatisierten Bepunktung und Ausgabe von Versorgungssystemen im Zielszenario erfolgt eine manuelle Prüfung jedes Clusters und ggf. eine Anpassung.

Bei der Definition der Versorgungssysteme ist dabei zu berücksichtigen, dass speziell bei der Empfehlung zu dezentralen Wärmepumpen auch alternative Wärmequellen denkbar und umsetzbar sind. Für die Erreichung der Klimaneutralität sind diese in der Regel als gleichwertig anzusetzen. So sind bei einer Empfehlung für dezentrale Erdwärme-Wärmepumpen auch grundsätzlich Wärmepumpen mit z.B. Umweltwärmequelle Außenluft, Grundwasser oder Eisspeicher-Systemen für die Zielerreichung geeignet.

## Vorgehensweise bei der Erstellung mehrerer Zielszenarien

Für die Definition eines maßgeblichen Zielszenarios werden zunächst mehrere Zielszenarien nach obig beschriebener Vorgehensweise erstellt. Zielszenario 2 und 3 werden anhand automatisierter Bewertungsansätze unter Berücksichtigung einer definierten Kriteriengewichtung bestimmt. Gemäß den Vorgaben werden daraus die hierfür besonders geeigneten Versorgungssysteme und Energieträger je Cluster berechnet. Aus den beiden Zielszenarien 2 und 3 wird im Anschluss manuell das Zielszenario 1 entwickelt. Hierbei finden zusätzlich Informationen aus den vorangegangenen Projektphasen sowie der lokalen Akteure (Stadtverwaltung, Stadtwerke) Beachtung, die nur schwer automatisiert zu berücksichtigen sind. In Abbildung 35 sind die eingesetzten Energieträger in den jeweiligen Zielszenarien (ZS)



dargestellt. Ergänzend zeigt Abbildung 36 die Anteile der einzelnen Versorgungssysteme am Gesamtwärmebedarf und in Relation zur Clusteranzahl auf.

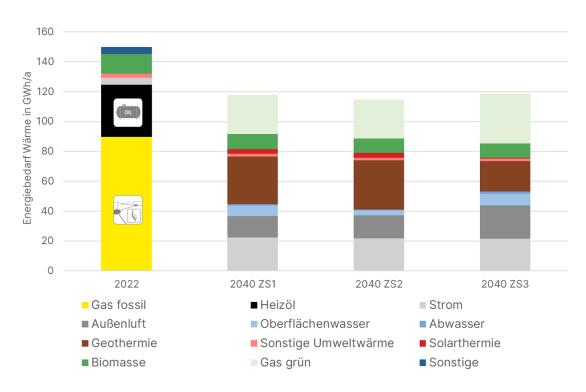



Abbildung 35: Anteile der Endenergieträger an den Zielszenarien

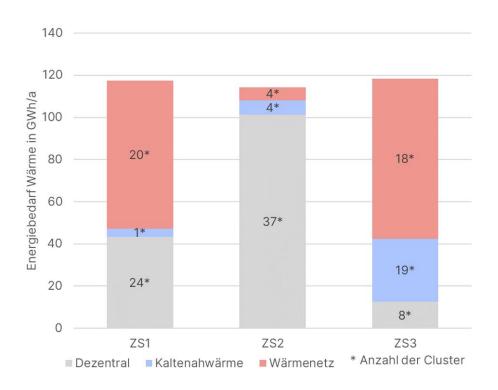



Abbildung 36: Anteile der Versorgungssysteme innerhalb der Zielszenarien

Projekt-Name: KWP Besigheim



Die so ermittelten Szenarien sind in Tabelle 12 und Tabelle 13 gegenübergestellt. Es ist zu erkennen, dass sich die automatisch erzeugten Szenarien 2 und 3 im Wesentlichen an der Anzahl der zentral und dezentral versorgten Gebieten unterscheiden. Das Zielszenario 2 beruht größtenteils auf dezentraler Versorgung. Das Zielszenario 3 wird dagegen überwiegend über eine zentrale Versorgung mit Wärme versorgt. Die Szenarien 2 und 3 unterscheiden sich im Wesentlichen dadurch, dass im Szenario 2 ein höherer Anteil dezentraler Versorgung durch Erdwärme, Außenluft und Biomasse zum Einsatz kommt, während im Zielszenario 3 mit gleichen Energieträgern Wärmenetze die Versorgung erbringen.

Tabelle 12: Übersicht der Energieträger in den Zielszenarien

|                      | ZS1 [MWh] | ZS2 [MWh] | ZS3 [MWh] |
|----------------------|-----------|-----------|-----------|
| Sonstige Umweltwärme | 1.770     | 1.770     | 1.770     |
| Abwasser             | 816       | 586       | 1.586     |
| Flusswasser          | 7.033     | 3.127     | 7.618     |
| Geothermie           | 32.044    | 32.984    | 20.422    |
| Außenluft            | 14.189    | 15.544    | 22.263    |
| Strom                | 22.517    | 21.781    | 21.641    |
| Solarthermie         | 3.152     | 3.283     | 338       |
| Biomasse             | 10.142    | 9.677     | 9.677     |
| grünes Gas           | 26.222    | 25.871    | 33.308    |
| Summe                | 117.885   | 114.622   | 118.623   |

Projekt-Name: KWP Besigheim



Tabelle 13: Übersicht der Versorgungsoptionen in den Zielszenarien

|                                             | ZS1                            | ZS2                            | ZS3                            |
|---------------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Dezentrale Versorgung                       | 24 Cluster (53%)               | 37 Cluster (83%)               | 8 Cluster (20%)                |
|                                             | 44 GWh (38%)                   | 102 GWh (89%)                  | 12 GWh (10%)                   |
| Wärmenetz                                   | 20 Cluster (44%)               | 4 Cluster (9%)                 | 18 Cluster (39%)               |
|                                             | 70 GWh (59%)                   | 6 GWh (5%)                     | 76 GWh (63%)                   |
| Kalte Nahwärme                              | 1 Cluster (2%)                 | 4 Cluster (9%)                 | 19 Cluster (41%)               |
|                                             | 4 GWh (3%)                     | 7 GWh (6%)                     | 31 GWh (26%)                   |
| Gasbedarf 2040                              | 16 Cluster (36%)               | 5 Cluster (11%)                | 17 Cluster (38%)               |
| (2022: 45 Clu; 90 GWh)                      | 26 GWh (22%)                   | 26 GWh (23%)                   | 33 GWh (28%)                   |
| Wärmenetzlänge                              | 28,2 km                        | 9,5 km                         | 56,2 km                        |
| (2022: 0 km)                                | 42,2 Mio €                     | 14,3 Mio €                     | 84,3 Mio €                     |
| Treibhausgasemissionen (2022: 35.721 t CO2) | 1,6 Tt CO <sub>2</sub> (-95 %) | 0,4 Tt CO <sub>2</sub> (-99 %) | 0,9 Tt CO <sub>2</sub> (-97 %) |

## 6.2 Maßgebliches Zielszenario 2040

Aus den oben beschriebenen Zielszenarien wird das maßgebliche Zielszenario bestimmt, welches als grundlegendes Szenario im Rahmen der kommunalen Wärmeplanung weiter genutzt wird. In einem Abwägungsprozess in Zusammenarbeit mit der Kommunalverwaltung und Energieunternehmen werden Rahmenbedingungen, Umsetzungswahrscheinlichkeiten und erforderlicher Kapazitäten in die Entscheidungsfindung mit einbezogen. Unter Beachtung der fachlichen Vorarbeiten aus der kommunalen Wärmeplanung und der Einschätzung der involvierten Projektbeteiligten ist Zielszenario 1 als maßgebliches Zielszenario definiert worden.

Das maßgebliche Zielszenario in Abbildung 37 zeigt die Energieträger und Versorgungssysteme, die im Zieljahr 2040 eine klimaneutrale Wärmeversorgung ermöglichen. In nachfolgendem Diagramm ist die Entwicklung der Energieträger zur Wärmebedarfsdeckung zu sehen.



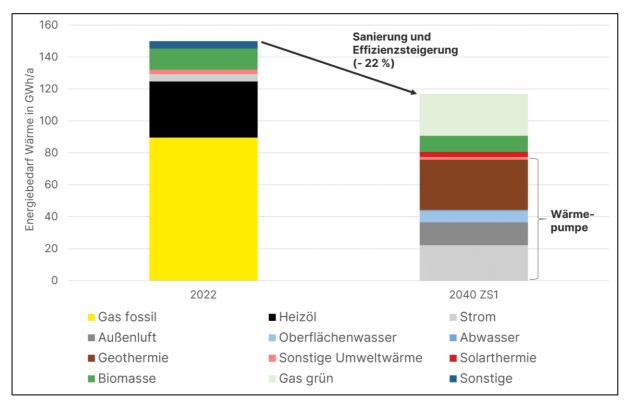



Abbildung 37: Energieträger zur Wärmeversorgung im Basis- und Zieljahr

Abbildung 37 verdeutlicht, dass sich der Endenergiebedarf Wärme von knapp 152 GWh um ca. 22 % durch Gebäudesanierung und Effizienzsteigerung reduziert. Die resultierenden 118 GWh werden zu 66 % durch Wärmepumpen erzeugt. Dabei ist die wesentliche Umwelt-Wärmequelle die Geothermie. Für die Geothermie sind sowohl dezentrale Sonden berücksichtigt als auch zentrale als Wärmequelle für Wärmenetze. Hierfür sind entsprechend Freiflächen zu mobilisieren. Potenzielle Flächen wurden im Rahmen der Potenzialanalyse ermittelt und abgestimmt. Außenluft als Wärmequelle spielt ebenso eine wichtige Rolle im maßgeblichen Zielszenario. Diese ist grundsätzlich überall möglich und nicht an lokale Rahmenbedingungen gebunden, solange die Schallemissionsgrenzen nicht überschritten werden und Aufstellorte für die Kühler vorhanden sind. Weitere wesentliche Umweltwärmequellen sind Abwasser und Flusswasser.

Flusswasser nimmt im gezeigten Zielszenario ca. 6 % ein. Der Anteil ist abhängig von der Genehmigung, wieviel Wasser zur thermischen Nutzung entnommen werden darf. Dementsprechend kann sich dieser Anteil im Zuge einer vertiefenden Machbarkeitsstudie variieren.

Biomasse und Grünes Gas bilden knapp 22 % der Versorgung des Zielszenarios ab. Diese dienen als Grundlage zur Abdeckung von Spitzenlasten in Wärmenetzen und finden Anwendung in industriellen Prozessen. Der Anteil des grünen Gases könnte in Wärmenetzen in der Regel auch anteilig durch Biomasse ersetzt werden.



In Abbildung 38 sind die Stadtteile sowie die zum Einsatz kommenden Energieträger aufgeführt.

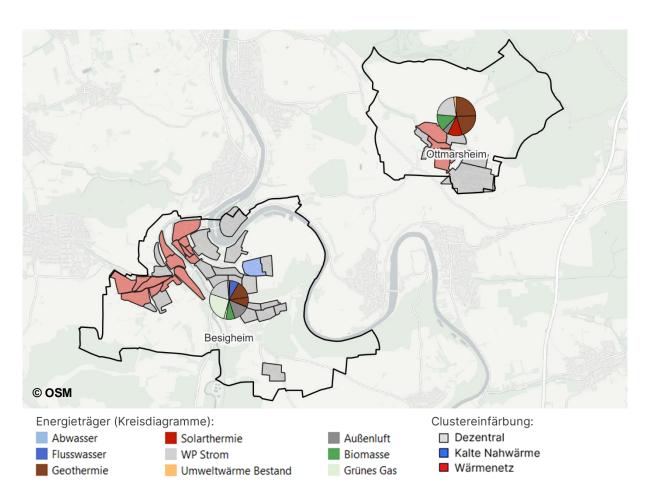



Abbildung 38: Zielszenario 2040 Energieversorgung der Stadtteile

Entsprechend zu den Energieträgern werden auch die Versorgungssysteme ausgewiesen, die geeignet sind. Diese werden in nachfolgender Abbildung dargestellt. Dabei wird unterschieden zwischen dezentralen Versorgungssystemen, die die Wärme direkt im/am abnehmenden Gebäude erzeugen und zentralen Versorgungssystemen wie Wärmenetze. Bei den Wärmenetzen wird zwischen Wärmenetzen (verteilte Wärme direkt nutzbar) und kalten Wärmenetzen (dezentrale Wärmepumpen zur Wärmebereitstellung) differenziert.

Die grundsätzlichen Cluster mit zentraler Versorgung im Jahr 2040 laut Zielszenario der kommunalen Wärmeplanung sind in Abstimmung mit der Stadtverwaltung und der LEA bestimmt worden.

Im maßgeblichen Zielszenario werden 21 Cluster über zentrale Wärmenetze versorgt. 24 Cluster werden dezentral versorgt, die Wärmeerzeugung erfolgt hier in den Gebäuden. Die Wärmemenge, die über Wärmenetze im Jahr 2040 bereitgestellt werden soll, liegt bei ca.

Ingenieure aus

Leidenschaft

plan

74 GWh. Zugrunde liegt hier eine Anschlussquote von nahezu 100 % in den entsprechenden Clustern. Im Basisjahr verfügt Besigheim über keine Wärmenetze.

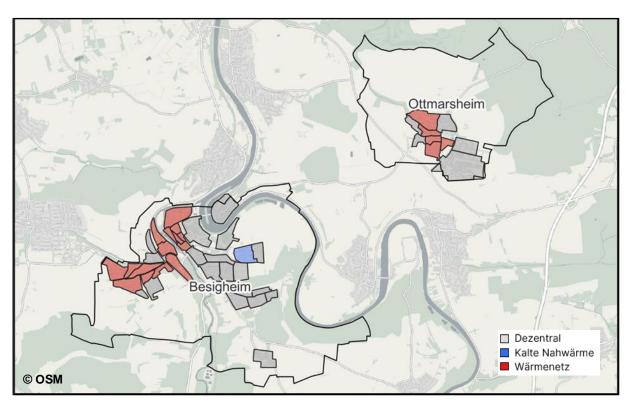



Abbildung 39: Zielszenario 2040 Versorgungssysteme der Cluster

## 6.3 Zielszenario 2030

Im Zielszenario für das Jahr 2030 wird im Vergleich zu 2040 ersichtlich, dass die Sanierung der Gebäude und die Effizienzsteigerung in gewerblichen Prozessen noch nicht so stark fortgeschritten und die Umstellung der Energieträger noch nicht in allen Gebieten erfolgt ist.

Der Fortschritt der Transformation in Richtung Zielszenario wird je nach Versorgungssystem unterschiedlich betrachtet. In dezentral versorgten Clustern wird davon ausgegangen, dass die Umstellung der Energieträger mit der energetischen Sanierung der Gebäude korrelieren kann. Cluster mit einem hohen Anteil bis 2030 sanierter Gebäude werden mit einem entsprechend höheren Anteil bei der Umstellung der Energieträger angesetzt.

In zentral versorgten Clustern werden anhand der priorisierten Maßnahmen aus Kapitel 7.5 Versorgungsumstellungen angesetzt. Hierzu gehört das Wärmenetz in Ottmarsheim und das Wärmenetz Burgacker in Besigheim. Alle anderen zukünftig zentral versorgten Cluster werden zunächst für das Zwischenziel 2030 im Endenergiemix als unverändert betrachtet. Die Reduktion des Wärmebedarfs durch energetische Sanierungsmaßnahmen bleibt davon unberührt.

In nachfolgender Abbildung wird die Energieträgerverteilung 2030 dargestellt.



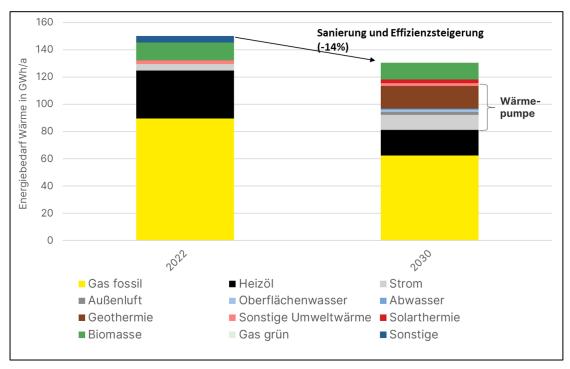



Abbildung 40: Zielszenario 2030

Der Wärmebedarf ist ca. 14 % geringer als im Jahr 2022. Knapp ein Drittel dessen wird bereits über erneuerbare Energien bereitgestellt, wovon der Großteil durch Wärmepumpen gedeckt wird. Im Jahr 2030 wird gemäß dem maßgeblichen Zielszenario in sechs Clustern bereits eine zentrale Versorgung angesetzt (siehe Abbildung 41).

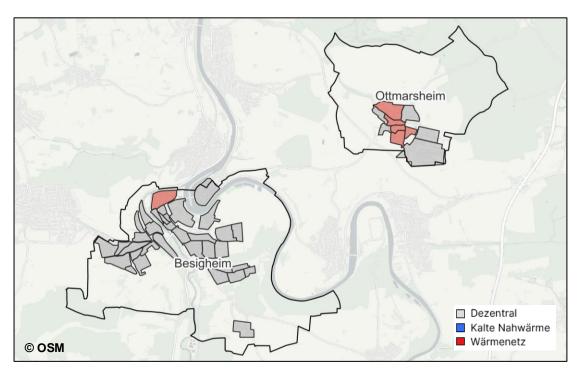



Abbildung 41: Zielszenario 2030 Versorgungssysteme der Cluster

Projekt-Name: KWP Besigheim



## 6.4 Kostenschätzung für maßgebliches Zielszenario 2040

Die Kostenschätzung für das maßgebliche Zielszenario 2040 beschränkt sich auf die Kosten für die Sanierung von Gebäuden und der damit verbundenen Verbesserung des Wärmeschutzes sowie auf die Kosten für den Ausbau von Wärmenetzen. Kosten für zentrale Wärmeerzeuger von Wärmenetzen sind in der vorliegenden Gesamtkostenschätzung aufgrund des hierfür nur schwer prognostizierbaren Kostenrahmens nicht enthalten.

Zur Erreichung der Reduktionsziele im Wärmebedarf sind gemäß des gewählten Sanierungsszenarios in Besigheim bis 2040 rund 1.200 Gebäude zu sanieren (2% Sanierungsquote). Diese Gebäude weisen zusammen eine Brutto-Geschossfläche von 311.410 m²<sub>BGF</sub> auf. Unter Annahme eines Kostenansatzes für eine vollumfängliche energetische Sanierung von 360 €/m² <sub>BGF</sub> (Thorsten, Walberg, Gniechwitz, & Paare, 2022) ergeben sich rund 112 Mio. € Investitionsaufwand für Dämmung und Sanierung in der Gesamtkommune. Mit dem Ansatz einer linearen Kostenaufteilung resultieren bis zum Zieljahr 2040 im Mittel 7 Mio. €/Jahr (abzüglich Fördermittel), die für die Sanierung des Gebäudebestandes durch die jeweiligen Eigentümer aufzubringen sind.

Im Zielszenario 2040 sind 21 Cluster mit Wärmenetzen aufgeführt. Für deren Erschließung wird der Ausbau von rund 28.146 m Wärmenetz angenommen. Bei Kostenansätzen von 1.500 €/m Wärmeleitung (inklusive Tiefbaukosten und Wiederherstellung der Oberfläche) resultieren 43 Mio. € Gesamtkosten. Unter Annahme einer linearen Aufteilung bis 2040, resultiert ein mittlerer Netzausbaubedarf von 1,8 km/Jahr, der mit Investitionen in Höhe von 2,7 Mio. €/Jahr verbunden wäre.

Projekt-Name: KWP Besigheim



## 7 Wärmewendestrategie & Maßnahmenkatalog

## 7.1 Ziele und Vorgehensweise

Aufbauend auf dem Entwurf des maßgeblichen Zielszenarios werden eine übergeordnete Handlungsstrategie und konkrete Maßnahmen ausgearbeitet, die für die kommunale Verwaltung als Leitfaden für die Umsetzung der kommunalen Wärmeplanung in den nächsten Jahren dienen. Als zentrales Ergebnis werden konkret die fünf verpflichtenden Maßnahmen entwickelt, deren Umsetzung laut Klimaschutzgesetz Baden-Württemberg in den nächsten fünf Jahren begonnen werden soll. Diese sind in Kapitel 7.5 ausformuliert.

Ergänzend werden in den nachfolgenden Kapiteln noch übergeordnete begleitende Maßnahmen beschrieben, die für einen erfolgreichen Transformationsprozess nach der erstmaligen Erstellung der kommunalen Wärmeplanung strukturell anzugehen sind. Diese sind in der sogenannten "Meta-Ebene" angeordnet. Darüber hinaus werden im Zuge der kommunalen Wärmeplanung auch potenzielle Wärmenetzeignungsgebiete, sogenannte "Prüfgebiete Wärme", und kommunale Fokusgebiete definiert, die aufgrund der Bestandssituation priorisiert zu betrachten sind.

Die Mindestanforderungen nach § 27 Klimaschutzgesetz Baden-Württemberg beinhalten fünf Maßnahmen im Maßnahmenkatalog. Die Ausweitung des Maßnahmenkatalogs auf alle Cluster innerhalb der kommunalen Gemarkung wird als sinnvoll erachtet. Dies ist sinnvoll, um eine vollumfängliche Bewertungsgrundlage für die Fortschreibung der kommunalen Wärmewende-Strategie zu schaffen und Abhängigkeiten und Potenziale über die fünf Maßnahmengebiete hinaus auch zukünftig dokumentiert und im Blick zu haben. In Kapitel 7.4 sind die Inhalte und Beispiele dieser Clustersteckbriefe beschrieben.

## 7.2 Maßnahmen auf Meta-Ebene

Um das Thema kommunale Wärmeplanung in der Kommune ausreichend berücksichtigen und etablieren zu können, bedarf es entsprechender Personalressourcen und Haushaltsmittel. Zudem sollten klimaschutzrelevante Themen in der Kommune weiter zur Diskussion gebracht und notwendige Projekte mit externen und internen Partnern angeschoben werden.

Nachfolgend sind die Maßnahmenbereiche aufgeführt, die sich ergänzend zu den fünf verpflichteten Maßnahmen bei EGS-plan auf der Meta-Ebene ansiedeln. Darunter verstehen wir im Wesentlichen rahmenbildende, prozessuale Maßnahmen zur Verstetigung des Transformationsprozesses bei der Umsetzung der kommunalen Wärmeplanung in der Kommunalverwaltung. Diese Prozesse sind auf einen längeren Zeitraum bis zur Vollendung der Wärmewende ausgerichtet. Zum Teil liegt dabei der Erfolg der späteren Umsetzung explizit nicht im direkten Wirk- und Entscheidungsbereich der Kommune.

Projekt-Name: KWP Besigheim



Diese sind unter anderem folgende Ansätze:

## a) Schaffung von verwaltungsinternen Strukturen für die Fortschreibung der KWP

- Ziel: Etablierung der KWP als fortlaufende Aufgabe der Kommunalverwaltung
- Maßnahmen:
  - Schaffung, Qualifizierung und Etablierung von Personalkapazitäten in der Verwaltung (Klärung von Aufgaben, Zuständigkeiten und Befugnissen)
  - o Organisation und Koordination der Fortschreibung der KWP
    - Aktualisierung von Daten
    - Berichtswesen Monitoring und Reporting
    - Evaluation von Maßnahmen und Strategien
  - Einrichtung eines regelmäßigen verwaltungsinternen "Wärmewende-Meetings" mit den beteiligten Fachabteilungen (Fachabteilungsübergreifende Planungsabstimmungen im Kontext der KWP)
  - Koordination eines j\u00e4hrlichen KWP-Workshops unter Beteiligung von Fachexperten aus dem Bereich Energie und Stadtplanung (u.a. die Bereiche Stadtplanung und entwicklung, Umwelt- und Klimaschutz, Energie (inkl. Stadtwerke und Eigenbetriebe), Wohnungsbau, Geb\u00e4ude- und Energiemanagement, K\u00e4mmerei sowie weitere Abteilungen und Bereiche der Kommune)

# b) Wärmeplanung als Teil der kommunalen Planungsaufgaben der Verwaltung

- Ziel: Einzug der lokalen Wärmewendestrategie in die Fachplanungen der Kommune
- Maßnahmen:
  - Prüfung laufender und neuer städtischer Projekte im Kontext der Energieversorgung auf die Kompatibilität mit den Zielsetzungen der KWP
  - Formulierung von Textbausteinen als Vorlage für Bauleitplanung und Bebauungspläne mit Ausrichtung auf die Rahmensetzung für Ziel der klimaneutralen Wärmeversorgung
  - o Ausweisung von Wärmenetz-Vorrang/Ausbau-Gebieten
  - Prüfung von kommunalrechtlichen Ansätzen wie Verbrennungsverbote und Anschluss- und Benutzungspflichten in Wärmenetz-Gebieten
  - "Fernwärmesatzung", § 11 GemO BW
  - Satzungsrechtliches Verbrennungsverbot geregelt über z.B. B-Plan
  - Aufnahme der Anforderungen der KWP als verbindliche Elemente in städtebaulichen Kaufverträgen und Konzeptvergabeverfahren
  - Prüfung der Konzessionsverträge auf Zielkonflikte der KWP sowie Berücksichtigung von Klimaaspekten und KWP-Ergebnissen im Auswahlverfahren und bei der Neuausschreibung
  - Standortplanung: Ansiedlung von Gewerbe mit Abwärme-Potenzialen in Fernwärmegebieten und Verbrauchern mit Gasbedarf in Gasversorgungsgebieten
  - Transfer der kommunalen Wärmeplanungsergebnisse in die Regionalplanung (Flächensicherung, Potenzialerschließung und Ausweisung von Vorranggebieten)

Projekt-Name: KWP Besigheim



## c) Kommunikationskonzept zur kommunalen Wärmeplanung

 Ziel: Fortlaufende Information und Beteiligung der Bürgerinnen und Bürger sowie weiteren kommunalen Stakeholdern zur Akzeptanzsteigerung bei der Umsetzung der KWP

#### Maßnahmen:

- o Erarbeitung einer Kommunikationsstrategie für die relevanten Akteursgruppen
- Durchführung von Infokampagnen und -veranstaltungen zu Ergebnissen sowie anstehenden Prozessen und Maßnahmen
- o Aufbau Wissenspool und Infozentren

## d) Beschleunigung der Gebäudesanierung

- Ziel: Schaffung von Anreizen für Gebäudesanierungsmaßnahmen im privaten Bereich
- Maßnahmen:
  - Erarbeitung einer Kommunikationsstrategie im Kontext der Gebäudesanierung bzgl. Förderprogrammen und gesetzlichen Vorgaben
  - Bereitstellung von Informationsmaterial und Organisation von Informationskampagnen in Kooperation mit den Energieagenturen
  - Qualifizierungskonzept f
    ür lokales Handwerk und Energieberater
  - Prüfung von kommunalen Förderprogrammen
  - Wahrnehmung der Vorbildfunktion der öffentlichen Hand durch forcierte Sanierung der eigenen Liegenschaften
  - Identifikation von Schwerpunktgebieten, Initiierung kollektiver Sanierungsmaßnahmen bei ähnlichen Gebäudetypologien → Aufgabe für kommunalen Sanierungsmanager
  - Kontrolle der Umsetzung der gesetzlichen Vorgaben nach z.B. GEG, PV-Pflicht-BW durch die zuständige Behörde

#### e) Beschleunigung der Nutzung erneuerbarer Energien

 Ziel: Schaffung von Anreizen für die Nutzung erneuerbarer Energien an Gebäuden und auf Freiflächen

#### Maßnahmen:

- Erarbeitung einer Kommunikationsstrategie im Kontext der Nutzung von erneuerbaren Energien im Bereich Strom und Wärme
- Bereitstellung von Informationsmaterial und Organisation von Informationskampagnen in Kooperation mit den Energieagenturen
- Prüfung von kommunalen Förderprogrammen für den Austausch fossiler Wärmeerzeugungsanlagen durch emissionsfreie Wärmeerzeuger
- Organisation von Marktplätzen für Freiflächen für Energieinfrastrukturen; z.B.
   Freiflächen-PV, Agri-PV für das Vernetzen von Flächenbesitzern und Flächensuchenden

Projekt-Name: KWP Besigheim



# f) Beschleunigung der Energieeinsparung durch Effizienzmaßnahmen in der Anlagentechnik

 Ziel: Schaffung von Anreizen für Maßnahmen zur Effizienzsteigerung im Nicht-Wohnungsbereich und im Bereich Prozesswärme

#### Maßnahmen:

- Erarbeitung einer Kommunikationsstrategie im Kontext der Hebung von Effizienzpotenzialen
- Bereitstellung von Informationsmaterial und Organisation von Informationskampagnen in Kooperation mit den Energieagenturen
- o Prüfung von kommunalen Förderprogrammen für Effizienzmaßnahmen in relevanten Industrien in der Kommune mit konkreten fachlichen Schwerpunkten
- Organisation und Vernetzung von Akteuren innerhalb eines kommunalen Abwärme-Katasters

# g) Suffizienzstrategien für die Wärmewende im Wohnbereich

• Ziel: Entwicklung von Strategien zur Suffizienzsteigerung im Bereich Wohnen = Wärmeeinsparung durch z.B. Optimiertes Nutzerverhalten oder Erhöhung der Wohnflächendichte pro Kopf

#### Maßnahmen:

- Ausarbeitung von Konzepten für die Umsetzung von mehr Suffizienz im Wohnbestand
- Organisation, Förderung und Kommunikation von Konzepten mit Nutzerinformationssystemen (Ziel: Sensibilisierung und zeitnahe Information der Bewohner über Wärmeverbrauch)
- Organisation, Förderung und Kommunikation von Konzepten zur Reduzierung der pro Kopf zur Verfügung stehenden – und damit auch zu beheizenden – Wohnfläche durch Wohnungsbelegungs- und -vermittlungsstrategien oder veränderte Flächennutzungskonzepte

Projekt-Name: KWP Besigheim



#### 7.3 Priorisierte kommunale Gebiete für die Wärmetransformation

Im Rahmen der kommunalen Wärmeplanung werden vielfältige Datengrundlagen und Ergebnisdarstellungen analysiert. Ein für den Transformationsprozess wichtiges Element ist die Ausweisung räumlich abgegrenzter Bereiche, die mittelfristig im Zuge des Transformationsprozesses priorisiert zu berücksichtigen sind. Die Betrachtung dieser Gebiete erfolgt über zwei Wertungsmethoden, die in den folgenden Abschnitten erläutert werden. Mit der Analyse werden diese "*Prüfgebiete Wärme*" und die kommunalen Fokusgebiete identifiziert und für den weiteren Prozess sichtbar gemacht. Zusätzlich sind in dem vorliegenden Kapitel abschließend die Cluster aufgeführt, die auch perspektivisch mit grünen Gasen über die vorhandene Infrastruktur im Zielszenario versorgt werden.

## 7.3.1 Prüfgebiete Wärme

Zentrale Wärmeversorgungsinfrastrukturen können eine wichtige Rolle in einem klimaneutralen Versorgungssystem einnehmen. Wichtige Systemdienstleistungen können auf der Ebenen von Wärmenetzen und zentralen Wärmeerzeugungen für ein zukunftsfähiges Energiesystem besser zur Verfügung gestellt werden. Unter anderem sind diese laut (Peters, Steidle, & Böhnisch, 2020):

- Flexibilität und Vielfalt bei der Nutzung zentral erschließbarer erneuerbarer Energien
- Bedarfsgerechter, stromnetzgeführter Betrieb von Kraft-Wärme-Kopplungsanlagen und Groß-Wärmepumpen in Heizzentralen
- Erhöhung der Effizienz im Energiesystem durch die Möglichkeit zentrale Abwärmequellen zu nutzen
- Flexibilitätsgewinne durch Einbindung großer thermischer Speicher

Wärmenetze können dabei unterschieden werden in Wärmenetze mit einem Temperaturniveau, die nutzbare Wärme liefern und kalten Wärmenetzen, die als Wärmequelle für dezentrale Wärmepumpen in Gebäuden dienen.

Für die Ausweisung der Wärmenetzeignungsgebiete werden unter anderem folgende Aspekte berücksichtigt, die in Kapitel 4.4.1 detaillierter beschrieben sind:

- Vorhandensein bestehender Wärmenetze
- Wärmedichte bzw. Wärmeliniendichte im Cluster
- Siedlungsstruktur
- Vorhandensein von Ankerkunden

Ergänzend zu dieser Bewertung wird nun in dem vorliegenden Schritt die konkrete Verfügbarkeit von Energieträgern und Umweltwärmequellen für eine zentrale Wärmebereitstellung mitberücksichtigt. Diese Information stammt aus der Phase der Potenzialanalyse, in der die Deckungspotenziale von zentral nutzbaren erneuerbaren und emissionsfreien Energieträgern berechnet wurden

In Abbildung 42 sind die potenziellen Wärmenetzeignungsgebiete dargestellt, die im maßgeblichen Zielszenario enthalten sind.

Ingenieure aus
Leidenschaft
plan

Auf Basis dieser Ausarbeitung können, wie in Kapitel 7.2 beschrieben,

- Wärmenetzverdichtungsgebiete,
- Wärmenetzausbaugebiete,
- Wärmenetzneubaugebiete oder
- Prüfgebiete

definiert werden.

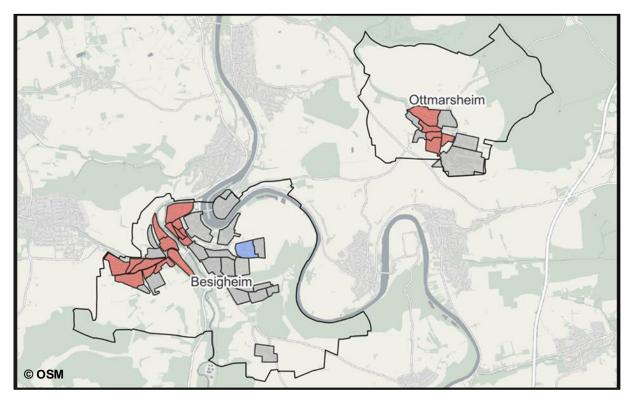


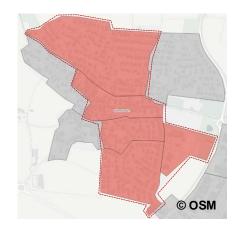

Abbildung 42: Clusterkarte mit Wärmenetzgebieten aus dem Zielszenario

Projekt-Name: KWP Besigheim



# 7.3.1.1 Relevante Wärmenetzgebiete im Zielszenario

Nachfolgend sind die relevanten Wärmenetzgebiete in Besigheim mit den Angaben zu Wärmebedarf, Wärmenetzlänge und die zum Einsatz kommenden Energieträger aus dem Zielszenario aufgelistet.


## Wärmenetz Burgacker

| Stadtteil               | Besigheim                 |      |  |  |  |  |
|-------------------------|---------------------------|------|--|--|--|--|
| Netztypologie           | Wärmenetz                 |      |  |  |  |  |
| Wärmenetzlänge          |                           |      |  |  |  |  |
| Bestand                 | 0 m                       | 1 (1 |  |  |  |  |
| Zielszenario            | 2.400 m                   |      |  |  |  |  |
| Wärmebedarf<br>Zieljahr | 3,1 GWh/a                 |      |  |  |  |  |
|                         | Grünes Gas (5 %)          |      |  |  |  |  |
|                         | Biomasse (5 %)            |      |  |  |  |  |
|                         | Strom WP (26 %)           |      |  |  |  |  |
| Energieträger           | Umweltwärme Bestand (1 %) | No.  |  |  |  |  |
|                         | Abwasser Kläranlage (7 %) |      |  |  |  |  |
|                         | Flusswasser (37 %)        |      |  |  |  |  |
|                         | Abwasser zentral (26 %)   |      |  |  |  |  |



# Wärmenetz Ottmarsheim

| Stadtteil               | Ottmarsheim               |  |  |  |  |
|-------------------------|---------------------------|--|--|--|--|
| Netztypologie           | Wärmenetz                 |  |  |  |  |
| Wärmenetzlänge          |                           |  |  |  |  |
| Bestand                 | 0 m                       |  |  |  |  |
| Zielszenario            | 6.500 m                   |  |  |  |  |
| Wärmebedarf<br>Zieljahr | 8,9 GWh/a                 |  |  |  |  |
|                         | Geothermie zentral (46 %) |  |  |  |  |
|                         | Strombedarf WP (23 %)     |  |  |  |  |
| Energieträger           | Außenluft (9 %)           |  |  |  |  |
|                         | Biomasse (20 %)           |  |  |  |  |
|                         | Umweltwärme Bestand (2 %) |  |  |  |  |

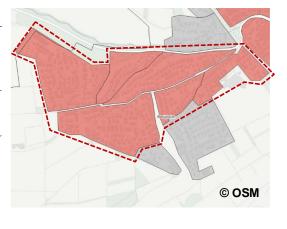


Projekt-Nr.: Projekt-Name:

E23365

Projekt-Name: KWP Besigheim




## KNW Bülzen I

| Stadtteil               | Besigheim                 |  |  |  |  |
|-------------------------|---------------------------|--|--|--|--|
| Netztypologie           | Kalte Nahwärme            |  |  |  |  |
| Wärmenetzlänge          |                           |  |  |  |  |
| Bestand                 | 0 m                       |  |  |  |  |
| Zielszenario            | 2.000 m                   |  |  |  |  |
| Wärmebedarf<br>Zieljahr | 3,8 GWh/a                 |  |  |  |  |
|                         | Geothermie zentral (69 %) |  |  |  |  |
| Energieträger           | Strombedarf WP (28 %)     |  |  |  |  |
| Energietrager           | Biomasse (3 %)            |  |  |  |  |
|                         | Umweltwärme Bestand (1 %) |  |  |  |  |



# Wärmenetz Weststadt und Löchgauer Feld:

| Stadtteil               | Besigheim                 |
|-------------------------|---------------------------|
| Netztypologie           | Wärmenetz                 |
| Wärmenetzlänge          |                           |
| Bestand                 | 0 m                       |
| Zielszenario            | 7.200 m                   |
| Wärmebedarf<br>Zieljahr | 10,4 GWh/a                |
|                         | Geothermie zentral (50 %) |
|                         | Grüne Gase (5 %)          |
| Energieträger           | Strombedarf WP (26 %)     |
|                         | Außenluft (14 %)          |
|                         | Biomasse (4 %)            |
|                         | Umweltwärme Bestand (1 %) |



E23365

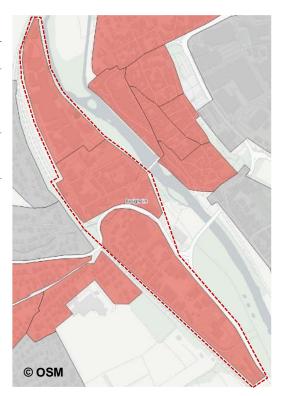
Projekt-Name: KWP Besigheim





## Wärmenetz westlich der Enz

| Stadtteil               | Besigheim  |
|-------------------------|------------|
| Netztypologie           | Wärmenetz  |
| Wärmenetzlänge          | 1          |
| Bestand                 | 0 m        |
| Zielszenario            | 5.600 m    |
| Wärmebedarf<br>Zieljahr | 36,8 GWh/a |


Außenluft (16 %)

Strombedarf WP (9 %) Flusswasser (7 %)

Energieträger Grüne Gase (66 %)

Biomasse (1 %)

Umweltwärme Bestand (0,3 %)



## Wärmenetz Altstadt

| Stadtteil               | Besigheim                 |
|-------------------------|---------------------------|
| Netztypologie           | Wärmenetz                 |
| Wärmenetzlänge          |                           |
| Bestand                 | 0 m                       |
| Zielszenario            | 2.800 m                   |
| Wärmebedarf<br>Zieljahr | 5,3 GWh/a                 |
|                         | Flusswasser (30 %)        |
|                         | Grüne Gase (27 %)         |
| Energieträger           | Strombedarf WP (17 %)     |
|                         | Außenluft (13 %)          |
|                         | Biomasse (12 %)           |
|                         | Umweltwärme Bestand (1 %) |



Projekt-Name: KWP Besigheim



## 7.3.2 Kommunale Fokusgebiete

In Ergänzung zu den Wärmenetzeignungsgebieten werden kommunale Fokusgebiete definiert, die aufgrund der aktuellen Situation einem besonderen Handlungsdruck im Zuge des anstehenden Transformationsprozesses im Bereich Wärme unterliegen.

Um diese Fokusgebiete zu identifizieren, werden für den Transformationsprozess relevante Aspekte näher betrachtet. Im Rahmen einer manuellen Analyse werden alle Cluster im Kommunalgebiet hinsichtlich der nachfolgenden Kriterien aufbereitet und bewertet.

## • Alter der Heizungen im Cluster

Bei Heizungen steht in der Regel nach 20 Jahren eine Erneuerung an. Bei einem hohen Anteil älterer Heizungsanlagen im Cluster besteht daher ein erhöhter Handlungsdruck bezüglich einer Entscheidung für ein neues Heizungssystem.

## Anteil Ölheizungen im Cluster

Fossile Energieträger sind für eine klimaneutrale Wärmeversorgung nicht geeignet. Speziell Ölheizungen sind daher konsequent und prioritär umzustellen auf klimaneutrale Wärmesysteme. Ein hoher Anteil von Ölheizungen wird daher als Kriterium erachtet, um einen definitiven Bedarf zur Umstellung der Wärmeerzeugungsanlage bestimmen zu können.

## • Absolute und flächenspezifische THG-Einsparpotenziale

Ziel einer klimaneutralen Wärmeversorgung ist die Minimierung von Treibhausgasemissionen. Ausgehend von den Ergebnissen der Bestandsanalyse und des Zielszenarios werden die Cluster mit relativ hohen Emissionen sowie Energieeinsparpotenzialen (siehe auch Kapitel 5.2.3) identifiziert und als priorisierende Teilgebiete für die Transformation der Wärmeversorgung ausgewiesen.

In Abbildung 43 sind die oben aufgeführten Kriterien in räumlicher Darstellung auf die Cluster in der Kommune angewendet. Durch Überlagerung der Informationen aus den einzelnen Karten können die kommunalen Fokusgebiete mit besonderer Relevanz und Handlungsbedarf im Kontext des anstehenden Transformationsprozesses identifiziert werden. Die resultierenden kommunalen Fokusgebiete sind in Abbildung 44 dargestellt.



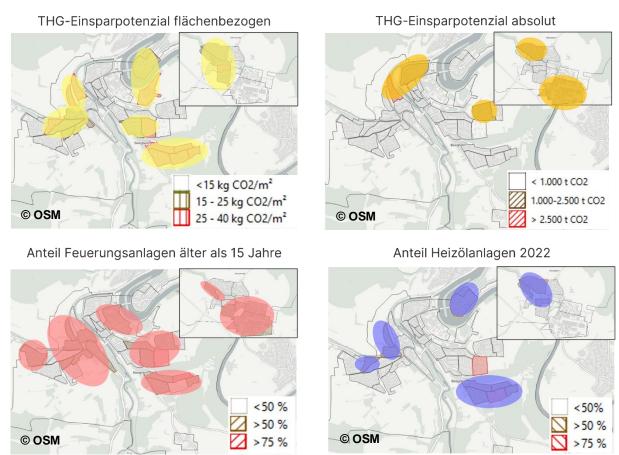



Abbildung 43: Kriterienübersicht für die Identifikation der Fokusgebiete

Für die in Abbildung 44 herausgearbeiteten Fokusgebiete sind geeignete Verfahren und Maßnahmen zu entwickeln, die aufzeigen sollen, wie eine Unterstützung beim anstehenden Transformationsprozess erfolgen kann. Neben der Berücksichtigung der Fokusgebiete bei den verpflichtenden Maßnahmen in Kapitel 7.5 ergibt sich auch die Möglichkeit, hierfür Folgeprojekte wie Stadtsanierungskonzepte (ehemals KfW-Programm 432; u.a. Möglichkeit zur Ausweisung als Sanierungsgebiete im Rahmen einer gesonderten städtebaulichen Entscheidung) oder auch Machbarkeitsstudien im Rahmen der Bundesförderung effiziente Wärmenetze (BEW) abzuleiten.



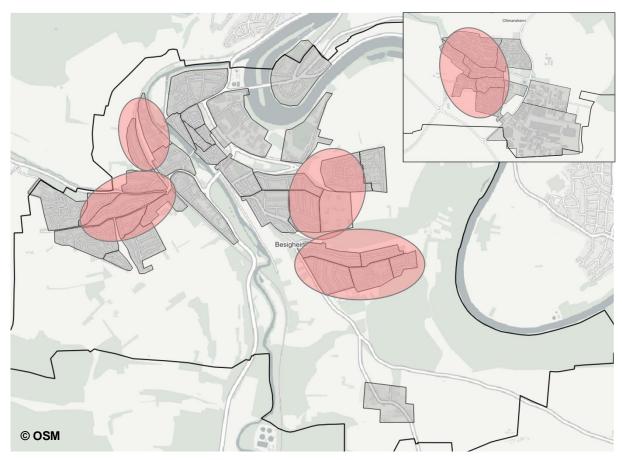



Abbildung 44: Kommunale Fokusgebiete

## 7.3.3 Gebiete mit perspektivischem Gasbedarf

Bei der kommunalen Wärmeplanung stellt sich regelmäßig die Frage, in welcher Form die Gasnetzinfrastruktur im Zieljahr genutzt werden soll. Von Aussagen zur Stilllegung oder dem Rückbau von Gasnetzen wird hierbei abgesehen, da die mittelfristige Entwicklung der vorgelagerten Energieinfrastruktur in Deutschland aktuell einer starken, nicht klar prognostizierbaren Dynamik unterliegt. Diesem Aufgabenbereich widmen sich die Gasnetzbetreiber im Rahmen von Gasnetzgebietstransformationsplänen, wobei sinnvollerweise die Erkenntnisse aus der kommunalen Wärmeplanung mit integriert werden.

Im Rahmen der kommunalen Wärmeplanung liegt der Schwerpunkt daher auf der Ausweisung der Cluster, die im Zielszenario mit grünen Gasen anteilig die Wärme bereitstellen. Dabei können auch Heizzentralen in Wärmenetzen mit enthalten sein, die an zentraler Stelle Wärme für die clusterübergreifende Versorgung bereitstellen. Die Methodik zur Bestimmung dieser Cluster ist in Kapitel 5.3.13.3 beschrieben. Die resultierenden Cluster sind in Abbildung 45 dargestellt.

Bei den Clustern mit Gasbedarf ist zu berücksichtigen, dass hier sowohl Cluster mit dezentralen Heizungsanlagen auf Gebäudeebene als auch Cluster mit Wärmenetzen enthalten sind. Bei den Clustern mit Wärmenetzen findet die Nutzung der grünen Gase nicht

Projekt-Name: KWP Besigheim



im Versorgungsgebiet, sondern am Ort der Wärmebereitstellung an den potenziellen Heizzentralen-Standorten statt.

Insgesamt werden im Zielszenario noch 26 GWh/a (Endenergie) für die Wärmeversorgung durch grüne Gase aufgewendet. Dies entspricht einem Anteil am gesamten Endenergiebedarf Wärme von rund 22 %. Im Vergleich zum Gasverbrauch im Basisjahr reduziert sich die Menge an Gasen zur Wärmebereitstellung um 63.300 MWh/a, was einem Rückgang um 71 % entspricht.

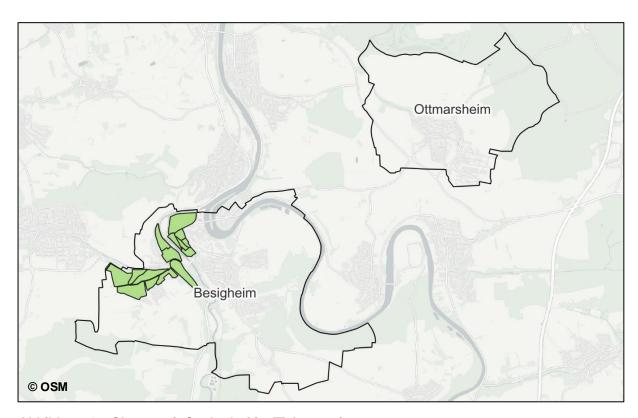



Abbildung 45: Cluster mit Gasbedarf im Zielszenario

Projekt-Name: KWP Besigheim



#### 7.4 Clustersteckbriefe

Für die abschließende Dokumentation der kommunalen Wärmeplanung wird für jedes Cluster ein Steckbrief erstellt. Die Clustersteckbriefe sind in der Anlage zum Abschlussbericht zusammengeführt und beinhalten die grundlegenden Informationen aus der kommunalen Wärmeplanung auf Clusterebene.

Die Struktur und Inhalt der Clustersteckbriefe orientieren sich dabei an den Arbeitsphasen der KWP. Im oberen Teil sind Informationen aus der Bestandsanalyse aufgelistet, die wesentlichen Kennzahlen, Nutzungsinformationen und einen Kartenausschnitt enthalten. Ergänzt um die Energie- und Treibhausgasbilanz sind alle wesentlichen Daten zur Beschreibung der Ausgangssituation prägnant enthalten.

Der Abschnitt "Potenziale" zeigt die angenommene Entwicklung des Wärmebedarfs im Cluster auf und informiert über die ermittelten Potenziale zur Bedarfsdeckung im Zieljahr, die vor Ort am Cluster vorliegen.

Die abschließende Rubrik "Zielszenario" bildet die Ergebnisse zum empfohlenen Versorgungssystem und Energieträgereinsatz ab. Hierbei sind zwei Versorgungsoptionen aufgeführt. Die Versorgungsoption 1 ist die Grundlage für das maßgebliche Zielszenario. Die Summe der Versorgungsoptionen der Kategorie 1 aller Cluster ergibt das maßgebliche Zielszenario, wie es in Abbildung 37 dargestellt ist. Ergänzend ist eine Versorgungsoption 2 aufgeführt, die ebenfalls zur Erreichung einer klimaneutralen Wärmeversorgung im Cluster geeignet wäre. Dies soll den Charakter der Zielszenario-Empfehlung unterstreichen und die weiteren optionalen Lösungsansätze benennen.

Bei der Nennung der Versorgungsoptionen ist dabei zu berücksichtigen, dass für die Erreichung der Klimaneutralität im Bereich Wärme speziell bei der Empfehlung von dezentralen Wärmepumpen auch alternative Wärmequellen als nahezu gleichwertig einzustufen sind. So können bei einer Empfehlung für dezentrale Erdwärme-Wärmepumpen auch grundsätzlich Wärmepumpen mit z.B. Umweltwärmequelle Außenluft, Grundwasser oder Eisspeicher-Systemen zum Einsatz kommen.

Die Clustersteckbriefe dienen nach der Erstellung der kommunalen Wärmeplanung als wichtige Dokumentation, um für Anfragen aus Verwaltungsbereichen und der Öffentlichkeit zielgerichtet Informationen bereitstellen zu können. So lassen sich andere kommunale Themen mit den Inhalten und Ergebnissen der kommunalen Wärmeplanung effizient und einfach abgleichen und ggf. kommunale Fragestellungen darauf basierend anpassen.

Auf nachfolgender Abbildung wird exemplarisch ein Clustersteckbrief dargestellt.

Projekt-Name: KWP Besigheim





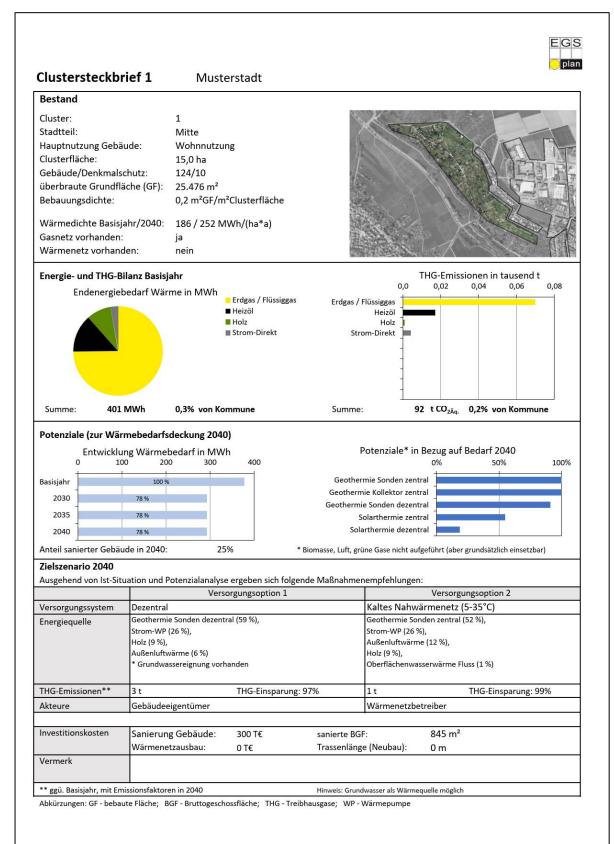



Abbildung 46: Beispiel Clustersteckbrief

Projekt-Name: KWP Besigheim



## 7.5 Fünf Maßnahmen gemäß Klimaschutzgesetz

Im § 27 des Klimaschutzgesetzes Baden-Württemberg ist die Verpflichtung zur Benennung von fünf Maßnahmen festgeschrieben: "Es sind mindestens fünf Maßnahmen zu benennen, mit deren Umsetzung innerhalb der auf die Veröffentlichung folgenden fünf Jahre begonnen werden soll."

Die Maßnahmen sind aus der Analyse des Zielszenarios und in Abstimmung mit der Kommunalverwaltung sowie den lokalen Akteuren entwickelt worden.

Es wurden auf Basis des Status Quo sowie des Zielszenarios Vorschläge für Maßnahmen gemacht, die für die Umsetzung einer klimaneutralen Wärmeversorgung notwendig sind.

Die Maßnahmen wurden in unterschiedliche Bearbeitungstiefen unterteilt,

- Strategische Vertiefungen auf Kommunalebene
- Machbarkeitsstudien in Vorbereitung zur Umsetzungsförderung
- Umsetzungsorientierte Maßnahmen

Diese Maßnahmen wurden dann mithilfe von folgenden Kriterien qualitativ bewertet:

- Kosten für Durchführung
- THG-Einsparung (CO<sub>2</sub>-Äq.)
- Synergien mit anderen Planungen der Kommunalverwaltung
- Beitrag für 100% klimaneutrale Versorgung
- · Akteursbereitschaft zur Mitwirkung
- · Reifegrad bis zur Umsetzung
- Mehrwert über Wärmesektor hinaus
- Projekterfolg steuerbar durch Kommunalverwaltung

Im Anschluss wurden die Maßnahmen mit dem Projektteam der Stadtverwaltung und der LEA durchgesprochen und gemeinsam die Entscheidung für fünf Maßnahmen getroffen.

In den nachfolgenden Abschnitten sind die finalen fünf Maßnahmen in Steckbriefen beschrieben. Die Steckbriefe weisen dabei eine einheitliche Struktur auf und beinhalten folgende Elemente:

- Beschreibung Ist-Situation
- Einordnung in Zielszenario der KWP
- Konkrete Auflistung der Leistungsbausteine
- THG-Einsparpotenzial
- Angaben zu den Akteuren
- Grober Zeitplan
- Kostenübersicht

Projekt-Name: KWP Besigheim



# 7.5.1 Stromnetzcheck – Analyse zur Erfüllung zukünftiger Stromnetz-Anforderungen

## **Kurzbeschreibung der Ist-Situation**

Das Stromnetz ist heute hauptsächlich durch den Strombezug für Produktionsprozesse bei Großverbrauchern und Gewerbe sowie den Nutzerstrom in Haushalten belastet. Zusätzlich speisen dezentrale Stromerzeugungsanlagen wie Photovoltaikanlagen und KWK-Anlagen in das kommunale Netz ein. Heutige Netzkomponenten wie die Stromleitungen, Umspannwerke und Netzkoppelstellen sind für diesen Betriebsfall ausgelegt. In Besigheim sind folgende Parameter im Rahmen der kommunalen Wärmeplanung erfasst:

Aktueller Strombedarf (gesamt): 60 GWh in 2022

PV-Anlagen, installierte Leistung: 5,2 MWp in 2022

Stromeinspeisung aus erneuerbaren Energien: 23,5 GWh in 2021

• Stromeinspeisung aus Kraft-Wärme-Kopplung: 0,5 GWh in 2021

Die Klimaschutzziele des Landes Baden-Württemberg verlangen bis 2040 eine klimaneutrale Wärmeversorgung und damit ist ein starker Ausbau von Wärmepumpen zu erwarten.

Ein Stromnetzcheck soll konkret prüfen, ob das lokale Stromnetz für die steigenden Anforderungen durch die Transformation des Wärmesystems, dezentraler Erzeugungsanlagen und Elektromobilität gerüstet ist.

## Zielszenario der kommunalen Wärmeplanung

Für das Ziel der Dekarbonisierung aller Verbrauchssektoren wird zukünftig eine signifikante Zunahme des Stroms für Wärmepumpen, Elektromobilität und Powert-to-X-Anwendungen (Technologien zur anderweitigen Nutzung und Speicherung von Stromüberschüssen) erwartet. Zusätzlich bedeuten die politischen Klimaziele des Landes Baden-Württemberg ein Ausbau der vorhandenen erneuerbaren Stromerzeugungskapazitäten um den Faktor 5 bis 2040.

Das kommunale Zielszenario prognostiziert einen steigenden Strombedarf allein durch die Versorgung mit Wärmepumpen um ca. 22.500 MWh (+ 37 % gegenüber Status-Quo).

Der Stromnetzcheck soll die Eignung der einzelnen Netzkomponenten und deren Zusammenwirken für die beschriebenen zukünftigen Betriebszustände bewerten. Neben einer Simulation dieser Betriebszustände beinhaltet der Check auch die konkrete Ableitung von Maßnahmen, welche frühzeitig ergriffen werden müssen, um zukünftig einen sicheren Netzbetrieb gewährleisten zu können.

Damit können die Ergebnisse der kommunalen Wärmeplanung und deren zu erwartende Auswirkungen auf die Netzentwicklung frühzeitig in die Netzentwicklungsplanung mit aufgenommen werden.

Projekt-Name: KWP Besigheim



#### Inhalte des Stromnetzchecks

- 1. Analyse Bestands-Stromnetz
  - a. Analyse der aktuellen Stromnetzinfrastruktur
  - b. Netzsimulation zur Bewertung der Kapazitätsauslastung einzelner Netzkomponenten
  - c. Identifikation kritischer Netzelemente für Status-Quo
- 2. Analyse Stromnetz für Zukunfts-Szenario
  - a. Entwicklung von Szenarien mit erhöhtem Strombedarf durch Wärmepumpen und Elektromobilität sowie erhöhter Stromeinspeisung durch PV-Ausbau
  - b. Netzsimulation zur Bewertung der zukünftigen Kapazitätsauslastung einzelner Netzkomponenten
  - c. Identifikation kritischer Netzelemente für Zukunfts-Szenario
- 3. Entwicklung von Anpassungsmaßnahmen für Stromnetz
  - a. Definition allgemeiner Anforderungen an zukunftsfähige Stromnetze
  - b. Entwicklung von Betriebsstrategien für Netzinfrastruktur
    - i. u.a. Einsatz von Flexibilitäten?
  - c. Entwicklung von Betriebsstrategien für Verbrauchs- und Erzeugungseinheiten (u.a. Laststeuerung/Demand Side Management (DSM))
  - d. Identifikation von Ertüchtigungsbedarf für Netzkomponenten
- 4. Bewertung von Anforderungen und Schnittstellen zum vorgelagerten Übertragungsnetz
- 5. Entwicklung einer Anpassungsstrategie mit Zeitplan
- 6. Dokumentation und Berichterstellung an die Kommunalverwaltung

### **Geplante THG-Einsparung**

Ein versorgungssicheres Stromnetz ist die Grundlage für den anvisierten Ausbau der Wärmepumpen. Durch den Stromnetzcheck werden keine direkten THG-Einsparungen erzielt.

#### **Akteure**

Als handelnder Akteur sind die Netze BW als lokaler Stromnetzbetreiber zu sehen. Die Erstellung des Stromnetzchecks ist dort dem Bereich der "Netzentwicklungsplanung" zuzuordnen. Die Kommunikation der Ergebnisse und der möglichen Auswirkungen soll dabei in regelmäßigen Abständen mit der Stadt Besigheim erfolgen.

#### Zeitplanung

Die erstmalige Bearbeitungsdauer der Maßnahme wird auf rund 12 Monate geschätzt. Die weitere Berücksichtigung ist als fortlaufende Aufgabe beim Netzbetreiber einzuordnen. Im Vorfeld kann ggf. eine Projektskizze erarbeitet und ein Förderantrag gestellt werden. Im Anschluss kann mit der Bearbeitung des Stromnetzchecks begonnen werden.

#### Kosten

Für die Durchführung des Stromnetzchecks werden keine direkten Kosten bei der Kommunalverwaltung erwartet. Die Kosten sind durch den Ersteller der Maßnahme oder Finanzierungsmittel Dritter zu erbringen.

Projekt-Name: KWP Besigheim



# 7.5.2 Konzept zur Erschließung des Potenzials durch Sanierung und Effizienzsteigerung

## Kurzbeschreibung der Ist-Situation

Im Bezugsjahr der Datenerfassung beträgt der Endenergieverbrauch für die Wärmebereitstellung rund 152 GWh. Der Großteil von knapp 55 % entfällt dabei auf die Wohnnutzung. Der restliche Verbrauch verteilt sich nahezu gleichmäßig auf die Sektoren GHD, Mischnutzung, sowie Industrie. Die Liegenschaften in kommunaler Hand verursachen rund 2 % des Endenergieverbrauchs

## Zielszenario der kommunalen Wärmeplanung

Das Einsparpotenzial aus Sanierung und Effizienzsteigerung (S&E) ist mit rund 38 GWh quantifiziert. Dies entspricht einer Senkung des Jahreswärmebedarfs um etwa 27 %, die bis zum Jahr 2040 erreicht sein soll. Rund 26 GWh werden im Zielszenario durch die Verbesserung der Gebäudehülle erreicht. Dies entspricht einer Sanierungsquote von 2 %/a auf das Niveau eines Effizienzhauses 70. Weitere 12 GWh sind durch die Verbesserung der Prozesseffizienz im Bereich GHD und Industrie angesetzt.

In der Maßnahme sind folgende Themen adressiert:

## 1. Ausarbeitung eines Gesamtkonzepts S&E für den Gebäudebestand, z.B. mit:

- Fragestellungen
  - o Wie und wo könnten 27 % Einsparung bis 2040 realisiert werden?
  - Wie k\u00f6nnen die Geb\u00e4udeeigent\u00fcmer:innen erreicht und \u00fcberzeugt werden?
     Welche Kommunikationskan\u00e4le sind daf\u00fcr zielf\u00fchrend?
  - Welche Maßnahmen, Ressourcen und Kooperationen sind nötig?
  - Wie k\u00f6nnen Dynamiken bei den Akteur:innen entfaltet und sich verst\u00e4rkende Prozesse ausgel\u00f6st werden?
- Auszuwertende und zu erarbeitende Grundlagen
  - Genauere, r\u00e4umliche Feststellung der Effizienzpotenziale anhand der pr\u00e4zisen Datengrundlage der KWP (z.B. auf Baublockebene)
  - Ausarbeiten einer Priorisierung von Clustern und Quartieren für die Erschließung der kurz- und mittelfristigen Effizienzpotenziale
  - Einschätzung der benötigten Kapazitäten im Handwerk, bei Energieberatung und zur Finanzierung (mit Fördermöglichkeiten)
  - Identifikation der Handlungsfelder der verschiedenen Akteur:innen, sowie Darstellung möglicher Synergien durch Koordinations- und Kooperationssysteme zwischen Akteur:innen

#### Umsetzung

- Erarbeitung einer Kommunikationsstrategie im Kontext der Gebäudesanierung bzgl. Förderprogrammen und gesetzlichen Vorgaben
- Bereitstellung von Informationsmaterial und Organisation von Informationskampagnen in Kooperation mit den Energieagenturen
- o Qualifizierungskonzept für lokales Handwerk und Energieberater
- o Prüfung von kommunalen Förderprogrammen
- Wahrnehmung der Vorbildfunktion der öffentlichen Hand durch forcierte Sanierung der eigenen Liegenschaften
- Identifikation von Schwerpunkt-/Fokusgebieten, Initiierung kollektiver Sanierungsmaßnahmen bei ähnlichen Gebäudetypologien → Ableitung von Quartierskonzepten, Aufgabe für kommunalen Sanierungsmanager

Projekt-Name: KWP Besigheim



- Kontrolle der Umsetzung der gesetzlichen Vorgaben nach z.B. GEG, PV-Pflicht-BW durch die zuständige Behörde
- 2. Weiterführen bzw. ausweiten des **kommunalen Sanierungsmanagements**, entsprechend den Zielsetzungen des Gesamtkonzepts S&E (s.u.)
- 3. **Kommunikation des Gesamtkonzepts S&E** und Koordination mit beteiligten Akteur:innen:
  - Aktive & passive Informationsangebote für Gebäudeeigentümer:innen (gesamte städtische Reichweite nutzen), insbesondere auch anhand von Sanierungsanlässen (z.B. Heizungstausch)
  - Aufbau neuer Informations- und Beteiligungsangebote (z.B. in Zusammenarbeit mit der lokalen Energieagentur)
  - Ausbilden von Multiplikator:innen und Bürgerschaftsgruppen /-experten, die das Thema anders zu den Menschen bringen und diese motivieren
  - Digitale Formate aufbauen (u.a.), → Inhalte jederzeit, überall, kostenlos, verfügbar (z.B. Info-Videos, Webinar-Aufzeichnungen, FAQs, u.ä.)
  - Diskurs gestalten, z.B. mit Kampagne über Ressourceneffizienz
  - Strategischen Austausch mit Handwerk und Energieberatung etablieren z.B. im Rahmen eines Qualitätsnetzwerk Bau:
    - Aus- und Weiterbildung von Fachkräften
    - Sanierungsstandard
    - Energieeffizienz-Anforderungen zur Versorgung mit Erneuerbaren Energien (vom Einzelhaus bis Gesamtsystem)

## **Geplante THG-Einsparung**

Durch die Sanierung der Gebäudehülle und Effizienzsteigerung in Industrie und Gewerbe ist Stand Heute eine Einsparung von ca. 7.500 t möglich. Die Maßnahme selbst ist nicht mit einer THG-Einsparung verbunden, ist aber als Voraussetzung für eine breite Umsetzung von Sanierungs- und Effizienzsteigerungsmaßnahmen zu verstehen.

#### **Akteure**

Zentrale Akteur:in für die Entwicklung des Konzepts ist die Kommunalverwaltung. Ggf. ist eine fachliche Zuarbeit durch eine Kommunikationsagentur erforderlich. Ziel ist ein maßgeschneidertes Konzept für die entsprechenden Zielgruppen zu erarbeiten. Wichtige Mulitplikatoren für die spätere Umsetzung sind Gebäudeeigentümer:innen (Privatpersonen, WEGs, gewerbliche, kommunal,...) sowie Handwerk & Energieberatung. Diese sind im Rahmen der Entwicklung und Umsetzung mit einzubinden.

#### Zeitplanung

Die Entwicklung des Kommunikationskonzepts erfordert eine Bearbeitungsdauer von rund 6 Monaten. Die Durchführung der Position 2, 3 und 4 sind stetige Aufgaben und dauerhaft zu verfolgen.

#### Kosten

Für die Entwicklung und Durchführung des Konzepts werden Honorarkosten und/oder Personalkosten innerhalb der Verwaltung in Höhe von rund 50 T€ (netto) geschätzt. Die Kosten sind durch den Auftraggeber oder Finanzierungsmittel Dritter zu erbringen.

Projekt-Name: KWP Besigheim



## 7.5.3 Konzept zur Flächensicherung für Energieinfrastrukturen

## Kurzbeschreibung der Ist-Situation

Die Nutzung von Flächen im Außenraum für Energieinfrastrukturen beschränkt sich aktuell im Wesentlichen auf Energieleitungen und Photovoltaik-(PV)-Freiflächenanlagen. Im Zuge der Energiewende nimmt die Flächensicherung für Wind- und PV-Anlagen als auch für Wärmeinfrastrukturen eine zunehmend bedeutende Rolle ein.

In Besigheim gibt es derzeit keine direkte energetische Freiflächennutzung für Wärme- oder Stromanwendungen.

Für die Erreichung der Energiewendeziele und dem damit verbundenen Ausbau der erneuerbaren Energien sind die Planungs- und Genehmigungsverfahren auf Bundes- und Landesebene neu ausgerichtet worden. Neben expliziten Flächenzielen bekommt die Flächensicherung für erneuerbare Energien im Zuge der Schutzgüterabwägung einen übergeordneten Stellenwert. So werden in verschiedensten Gesetzen (EEG, GEG<sup>10</sup>) die erneuerbaren Energien als vorrangige Belange in die jeweiligen Schutzgüterabwägungen eingebracht.

Die Klimaschutzziele des Landes Baden-Württemberg verlangen bis 2040 eine klimaneutrale Wärmeversorgung für das gesamte Kommunalgebiet.

Für das Erreichen dieser Ziele gilt es die Nutzungsmöglichkeiten für Freiflächen unter baurechtlichen und raumplanerischen Aspekten neu zu bewerten.

## Zielszenario der kommunalen Wärmeplanung

Im Zielszenario wird für die klimaneutrale Wärmeversorgung ein Großteil der Wärme über ein zentrales Versorgungssystem geliefert. Wärmenetzprüfgebiete finden in unterschiedlichen Bereichen der Stadt Anwendung. Dabei stehen auch unterschiedliche Wärmequellen zur Verfügung. Prüfgebiete sind in Besigheim in den Gebieten Löchgau, Bülzen I, Burgacker, Altstadt und westlicher der Enz anzutreffen. Darüber hinaus auch im Stadtteil Ottmarsheim.

Für die Bereitstellung klimaneutraler Wärme sind Umweltwärmequellen zu erschließen und Flächen für Heizzentralen bereitzustellen.

Im Zuge der Planung und Umsetzungsvorbereitung sind neben dem Aufzeigen der technischen Machbarkeit auch die baurechtlichen Voraussetzungen zu schaffen, um auf potenziell geeigneten Flächen Energieinfrastrukturen bauen zu können. Hierfür sind ggf. bisherige Planungsgrundlagen wie Bebauungspläne, Flächennutzungspläne oder Regionalpläne anzupassen. Zudem sind die Voraussetzungen zu schaffen, dass Betreibern von erneuerbaren Energieanlagen der Zugriff auf die Flächen ermöglicht wird.

Die Vorbereitung und Umsetzung des Prozesses zur Sicherung der erforderlichen Flächen auf dem Kommunalgebiet ist Gegenstand dieser Maßnahme.

\_

<sup>&</sup>lt;sup>10</sup> EEG = Erneuerbare Energien Gesetz; GEG = Gebäudeenergiegesetz

Projekt-Name: KWP Besigheim



#### Inhalte der Maßnahme

## 1. Grundlagenprüfung

- Analyse der identifizierten Energieinfrastruktur-Flächen aus bestehenden Planungen
  - Kommunaler Wärmeplanung
  - Wärmenetze 4.0 oder BEW-Studien
  - Regionalplan
  - Kommunales Energie- und Klimaschutzkonzept
- o Prüfung rechtlicher Grundlagen
  - Analyse bestehender rechtlicher Rahmenwerke bzgl. Einschränkungen und Nutzungsmöglichkeiten
    - Bebauungsplan
    - Flächennutzungsplan
    - Regionalplan
  - Analyse des Handlungsspielraums der Kommune, um Planungsrecht zu schaffen oder zu ändern
- o Bewertung von potenziellen Flächen für Energieinfrastrukturen, differenziert nach:
  - Erzeugung (u.a. Heizzentralen, Erdwärmesonden-Felder)
  - Verteilung (u.a. Wärmenetze)
  - Speicherung (u.a. Langzeitwärmespeicher)

## 2. Fachplanerische Umsetzung der Grundlagenprüfung

- Definition relevanter Flächen auf dem Gemarkungsgebiet (Lage, Größe) mit zeitlicher Perspektive
- Anpassung bestehender kommunaler Planungen für die Nutzung der Flächen für Energieinfrastrukturen
  - Bebauungsplan
  - Flächennutzungsplan

## 3. Aktive Flächensicherung

- Unterstützung bei der Sicherung von Flächen, die sich nicht im Eigentum der Kommune befinden
- Bereitstellung kommunaler Flächen
- Entwicklung und Umsetzung von Modellen zur Flächenbereitstellung an Energieunternehmen

#### **Geplante THG-Einsparung**

Durch die Flächensicherung selbst werden direkt keine THG-Emissionen eingespart

#### **Akteure**

Zentrale Akteur:in für die Grundlagenprüfung und Durchführung der Maßnahme ist die Kommunalverwaltung. Eine fachliche Beratung zu den baurechtlichen und raumplanerischen Fragestellungen durch Juristen ist erforderlich. Ebenfalls einzubinden sind Energieplaner zur Beschreibung und Bewertung der Energieinfrastrukturen.

Ingenieure aus
Leidenschaft
plan

## Zeitplanung

Für Schritt 1 "Grundlagenprüfung" ist eine Dauer von einem Jahr eingeplant. Für Schritt 2 wird eine Laufzeit von 2 Jahren angenommen. Schritt 3 "Aktive Flächensicherung" ist im Anschluss eine stetige Aufgabe und wird als zu institutionalisierenden Prozess auf dem Weg zur klimaneutralen Energieversorgung der Kommune verstanden.

#### Kosten

Für die Entwicklung und Durchführung der Maßnahme werden Honorarkosten für die Rechtsberatung und Energieplaner in Höhe von rund 100 T€ (netto) geschätzt. Die Kosten sind durch den Auftraggeber oder Finanzierungsmittel Dritter zu erbringen.

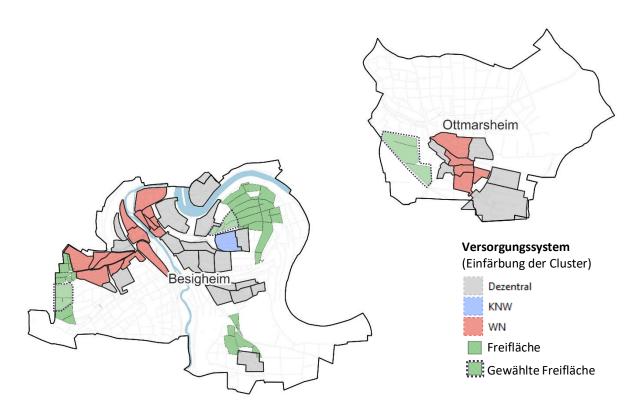



Abbildung 47: Versorgungssystem der Cluster und die ausgewählten Freiflächen im Zielszenario

Projekt-Name: KWP Besigheim



#### 7.5.4 BEW- Machbarkeitsstudie Wärmenetz Ottmarsheim

## Kurzbeschreibung der Ist-Situation

Das Untersuchungsgebiet in Ottmarsheim (siehe Abbildung 48) hat einen Gesamtwärmebedarf von 12 GWh/a. Dies entspricht 8 % des Gesamtwärmebedarfs von Besigheim. Die Wärmeversorgung der ca. 450 Kunden im Gebiet basiert heute zu 71 % auf fossilen Energieträgern (43 % aller Heizungen mit Öl; 40 % aller Heizungen älter als 20 Jahre) wodurch jährlich 3.000 t CO<sub>2</sub> emittiert werden. Das Gebiet weist eine erhöhte Wärmedichte auf, so dass eine zentrale Versorgung über ein Wärmenetz als wirtschaftlich attraktiv eingeschätzt wird.

Die Klimaschutzziele des Landes Baden-Württemberg verlangen bis 2040 eine klimaneutrale Wärmeversorgung für das gesamte Kommunalgebiet.

Eine Machbarkeitsstudie, z.B. nach dem Förderprogramm "Bundesförderung effiziente Wärmenetze" (BEW) soll konkret aufzeigen, wie dieses Ziel für das Prüfgebiet in Ottmarsheim erreicht werden kann.

## Zielszenario der kommunalen Wärmeplanung

Im Zielszenario für die klimaneutrale Wärmeversorgung im Jahr 2040 ist in Teilbereichen von Ottmarsheim aufgrund der hohen Wärmedichte eine Wärmeversorgung über eine zentrale Versorgungsstruktur basierend auf erneuerbaren Energieträgern berücksichtigt. Besonders hervorzuheben ist dabei der Handlungsdruck für diese Gebäude da dort 43 % aller Heizungen mit Öl betrieben werden und 40 % aller Heizungen älter als 20 Jahre sind. Als Energiequellen für das Wärmenetz im Zielszenario bieten unter anderem Geothermie, Biomasse, Außenluft sowie die Nutzung von grünem Gas ein Potenzial.

Die Wärmeversorgung kann dabei aus einer Heizzentrale erfolgen, welche z.B. direkt neben der zu aktivierenden Freifläche stehen könnte. Die Wärmeversorgung kann über Verwendung von Geothermie, Biomasse oder Großwärmepumpen erfolgen. Um das Wärmenetz sowie den genauen Standort einer Energiezentrale zu ermitteln und eine Erschließungsstrategie auszuarbeiten ist eine vertiefende Machbarkeitsstudie notwendig. Ein möglicher Standort für eine Heizzentrale ist die Ackerfläche neben der "Bodensee Wasserversorgung".

Die Machbarkeitsstudie beinhaltet die Analyse des bestehenden Gebiets und soll mit einer Potenzialermittlung der Freiflächen der Solarthermieanlagen und Erdwärmenutzung belastbare Aussagen zur Gestaltung eines Wärmenetzes liefern. Hierbei wird auch ein Kostenrahmen erstellt. Des Weiteren gilt es die zentralen Akteure zu beteiligen und einen Umsetzungsplan mit Fokus auf die Treibhausgasneutralität zu entwickeln.

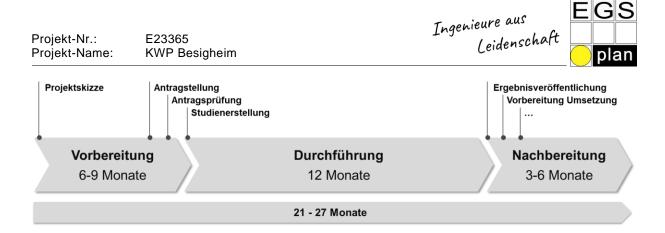
Projekt-Name: KWP Besigheim



#### Inhalte der Machbarkeitsstudie

- 1. Ist-Analyse und Erstellung der Ausbaustrategie
  - a. Analyse der Bedarfsmengen, Leistungen und Temperaturniveaus
  - b. Ausbaustrategie festlegen (Bereiche, Ankerkunden)
    - i. Synergien mit Tiefbau- und Netzarbeiten (Gas, Wärme)
- 2. Potenzialermittlung klimaneutraler Energien
  - a. Technische und wirtschaftliche Bewertung lokaler Wärmequellen
  - b. Analyse der Nutzungsoptionen für Erdwärmesonden, Biomasse und grüne Gase
  - c. Analyse der Einsatzmöglichkeiten von Großwärmepumpen und Langzeitwärmespeichern
- 3. Analyse von potenziellen Standorten für Wärmeerzeugung/-nutzung
  - a. Ermittlung Flächenbedarfe für Heizzentralen und Wärmespeicher
  - b. Flächenbedarfe für die Integration zusätzlicher Wärmequellen
  - c. Multikriterielle Bewertung der Standorte (u.a. Emissionen, Verkehrslast, ...)
- 4. Variantenentwicklung
  - a. Entwicklung von geeigneten Wärmeversorgungsvarianten am Standort
  - b. Betriebsstrategie
  - c. Sektorenkopplung und Strommarktdienlichkeit
  - d. Kostenaufstellung/ Wirtschaftlichkeitsberechnung
  - e. Prüfung der Genehmigungsfähigkeit
- 5. Terminplan für die Umsetzung der Zielvarianten
- 6. Maßnahmen zur Bürgereinbindung und Stärkung der Akzeptanz
- 7. Dokumentation und Berichterstellung

## **Geplante THG-Einsparung**


Ausgehend von der heutigen Versorgungsstruktur resultiert für das Gebiet in Ottmarsheim bei einer klimaneutralen Wärmeversorgung über ein Wärmenetz eine THG-Einsparung von 96 % oder 2.808 t/a. Bezogen auf die Gesamtkommune entspricht dies einer THG-Einsparung von ca. 8 % bezogen auf die heutigen Emissionen.

#### **Akteure**

Die Erarbeitung der Studie erfolgt im Auftrag und in enger Abstimmung mit der Stadt Besigheim. Für die Erstellung der Machbarkeitsstudie ist ein externer Dienstleister mit entsprechender Expertise im Bereich notwendig.

#### Zeitplanung

Die Machbarkeitsstudie und Erkundungsmaßahmen erfordern eine Bearbeitungsdauer von rund 12 Monaten. Im Vorfeld ist eine Projektskizze zu erarbeiten und ein Förderantrag zu stellen. Im Anschluss kann mit der Bearbeitung der Machbarkeitsstudie begonnen werden. Im Nachgang zur Machbarkeitsstudie sind die weiteren Schritte zur Umsetzung von Maßnahmen vorzubereiten.



#### Kosten

Für die Durchführung der Machbarkeitsstudie werden Honorarkosten in Höhe von rund 100 T€ (netto) geschätzt. Das Förderprogramm "Bundesförderung für effiziente Wärmenetze" bezuschusst eine Machbarkeitsstudie mit einer Förderquote in Höhe von bis zu 50 %. Die verbleibenden Kosten sind durch den Auftraggeber oder Finanzierungsmittel Dritter zu erbringen.

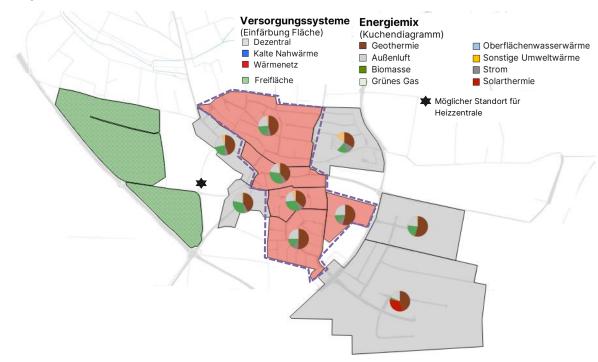



Abbildung 48: Zielszenario 2040 Wärmeversorgung im Untersuchungsgebiet in Ottmarsheim

Projekt-Name: KWP Besigheim



## 7.5.5 BEW- Machbarkeitsstudie Wärmenetz Burgacker

## Kurzbeschreibung der Ist-Situation

Das Gebiet Burgacker (siehe Abbildung 49) hat einen Gesamtwärmebedarf von 5 GWh/a. Dies entspricht 3 % des Gesamtwärmebedarfs von Besigheim. Die Wärmeversorgung der ca. 170 Kunden im Gebiet basiert heute zu 76 % auf fossilen Energieträger wodurch jährlich 1.175 t CO<sub>2</sub> emittiert werden.

Die Klimaschutzziele des Landes Baden-Württemberg verlangen bis 2040 eine klimaneutrale Wärmeversorgung für das gesamte Kommunalgebiet.

Eine Machbarkeitsstudie, z.B. nach dem Förderprogramm "Bundesförderung effiziente Wärmenetze" (BEW) soll konkret aufzeigen, wie dieses Ziel für das Untersuchungsgebiet Burgacker erreicht werden kann.

## Zielszenario der kommunalen Wärmeplanung

Im Zielszenario für die klimaneutrale Wärmeversorgung im Jahr 2040 ist im Gebiet Burgacker aufgrund der geeigneten Wärmedichte und den guten Voraussetzungen für die Erschließung zentraler Wärmequellen eine Versorgung über ein Wärmenetz basierend auf erneuerbaren Energieträgern vorgesehen. Als Energiequellen bieten unter anderem Flusswasser, Abwasser, Biomasse, grünes Gas und Außenluft ein Potenzial.

Die Wärmeversorgung kann dabei aus einer Heizzentrale erfolgen, welche z.B. in räumlicher Nähe zu den beiden möglichen Entnahmestellen in der Nähe der Kläranlage platziert werden könnte. Die Wärmeerzeugung für das Wärmenetz könnte über Groß-Wärmepumpen realisiert werden. Besonders attraktiv ist dieses Areal aufgrund der Rahmenbedingungen, da große Umweltwärmepotenziale (Abwasserwärme, Flusswasserwärme) relativ einfach und ohne große Flächeneingriffe aktivierbar sind. Um das detaillierte Wärmenetz sowie den genauen Standort einer Energiezentrale zu ermitteln und eine Erschließungsstrategie auszuarbeiten ist eine vertiefende Machbarkeitsstudie notwendig.

Die Machbarkeitsstudie beinhaltet die Analyse des bestehenden Gebiets und soll mit einer Potenzialermittlung des Flusswassers und Abwassers belastbare Aussagen zur Gestaltung eines Wärmenetzes liefern. Hierbei wird auch ein Kostenrahmen erstellt. Des Weiteren gilt es die zentralen Akteure zu beteiligen und einen Umsetzungsplan mit Fokus auf die Treibhausgasneutralität zu entwickeln.

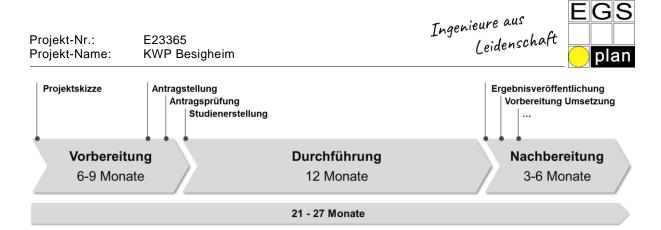
Projekt-Name: KWP Besigheim



#### Inhalte der Machbarkeitsstudie

- 1. Ist-Analyse und Erstellung der Ausbaustrategie
  - a. Analyse der Bedarfsmengen, Leistungen und Temperaturniveaus
  - b. Ausbaustrategie festlegen (Bereiche, Ankerkunden)
    - i. Synergien mit Tiefbau- und Netzarbeiten (Gas, Wärme)
- 2. Potenzialermittlung klimaneutraler Energien
  - a. Technische und wirtschaftliche Bewertung lokaler Wärmequellen
  - b. Analyse der Nutzungsoptionen Flusswasser- und Abwasserwärme
  - c. Analyse der Einsatzmöglichkeiten von Großwärmepumpen und Langzeitwärmespeichern
- 3. Analyse von potenziellen Standorten für Wärmeerzeugung/-nutzung
  - a. Ermittlung Flächenbedarfe für Heizzentralen und Wärmespeicher
  - b. Flächenbedarfe für die Integration zusätzlicher Wärmequellen
  - c. Multikriterielle Bewertung der Standorte (u.a. Emissionen, Verkehrslast, ...)
- 4. Variantenentwicklung
  - a. Entwicklung von geeigneten Wärmeversorgungsvarianten am Standort
  - b. Betriebsstrategie
  - c. Sektorenkopplung und Strommarktdienlichkeit
  - d. Kostenaufstellung/Wirtschaftlichkeitsberechnung
  - e. Prüfung der Genehmigungsfähigkeit
- 5. Terminplan für die Umsetzung der Zielvarianten
- 6. Maßnahmen zur Bürgereinbindung und Stärkung der Akzeptanz
- 7. Dokumentation und Berichterstellung

## **Geplante THG-Einsparung**


Ausgehend von der heutigen Versorgungsstruktur resultiert für das Gebiet Burgacker bei einer klimaneutralen Wärmeversorgung über ein Wärmenetz eine THG-Einsparung von 96 % oder 1.125 t/a. Bezogen auf die Gesamtkommune entspricht dies einer THG-Einsparung von ca. 3 % bezogen auf die heutigen Emissionen.

#### **Akteure**

Die Erarbeitung der Studie erfolgt im Auftrag und in enger Abstimmung mit der Stadt Besigheim. Für die Erstellung der Machbarkeitsstudie ist ein externer Dienstleister mit entsprechender Expertise im Bereich notwendig.

#### Zeitplanung

Die Machbarkeitsstudie und Erkundungsmaßahmen erfordern eine Bearbeitungsdauer von rund 12 Monaten. Im Vorfeld ist eine Projektskizze zu erarbeiten und ein Förderantrag zu stellen. Im Anschluss kann mit der Bearbeitung der Machbarkeitsstudie begonnen werden. Im Nachgang zur Machbarkeitsstudie sind die weiteren Schritte zur Umsetzung von Maßnahmen vorzubereiten.



#### Kosten

Für die Durchführung der Machbarkeitsstudie werden Honorarkosten in Höhe von rund 100 T€ (netto) geschätzt. Das Förderprogramm "Bundesförderung für effiziente Wärmenetze" bezuschusst eine Machbarkeitsstudie mit einer Förderquote in Höhe von bis zu 50 %. Die verbleibenden Kosten sind durch den Auftraggeber oder Finanzierungsmittel Dritter zu erbringen.

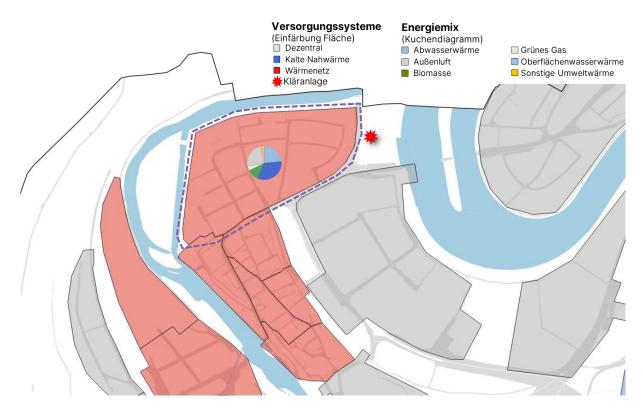



Abbildung 49: Zielszenario 2040 Wärmeversorgung im Untersuchungsgebiet Burgacker

Projekt-Name: KWP Besigheim



## 7.5.6 Dokumentation erweiterter Maßnahmenvorschläge

Gemäß der Vorgehensweise zur Priorisierung der fünf Maßnahmen in Kapitel 7.5 sind neben den final gewählten auch weitere relevante Maßnahmen in der Vorauswahl gesammelt und bewertet worden. Zur Dokumentation und zur Weiterverfolgung dieser Maßnahmen nach der Erstellung der kommunalen Wärmeplanung werden diese im Folgenden in Kurzform aufgeführt.

## **Roadmap Grünes Gas**

Für Hochtemperaturanwendungen in der Industrie und zur Deckung der Spitzenlast in einigen Heizzentralen sind weiterhin Verbrennungsprozesse gasförmiger Stoffe nötig. Im Zielszenario 2040 entfällt ein Anteil von ca. 22 % der Endenergieträger auf grüne Gase.

Im Rahmen der Studie "Roadmap Grünes Gas" soll eine Strategie entwickelt werden, ob und wie grünes Gas perspektivisch bereitgestellt werden kann, wo eine Instandhaltung des Gasnetzes notwendig ist und in welchen Bereichen ein Rückbau des Gasnetzes eine Option darstellen kann. Aufbauend auf einer vertiefenden Bedarfsanalyse und Marktabfrage werden Betriebe mit zukünftig zwingendem Gasbedarf identifiziert und die erforderlichen Gasbereitstellungsmengen kalkuliert. Die Analyse zielt auf Prozessanwendungen in Gewerbebetrieben als auch Bedarfe im Bereich der Schwerlast-Mobilität. Im nächsten Schritt werden die Möglichkeiten zur Gasbereitstellung bewertet neben der Bewertung des Bezugs grünem Gas aus vorgelagerten Übertragungsnetzen werden auch lokale Bereitstellungspotenziale aus Biogas- oder Elektrolyseanlagen betrachtet. Im Kontext der dezentralen, lokalen Gaseherstellung spielt die Abwärmenutzung eine wichtige Rolle. Im Zuge der Studie soll daher auch mit betrachtet werden, wie anfallende Abwärme aus neu zu errichtenden Anlagen für die externe Nutzung in z.B. Wärmenetzen strategisch sinnvoll nutzbar gemacht werden kann. Zusätzlich zur technischen Machbarkeit sollen auch wirtschaftliche und zeitliche Aspekte der Bereitstellung als auch die Akzeptanz bei der Öffentlichkeit analysiert werden.

Die Erstellung der "Roadmap Grünes Gas" kann u.a. als fortlaufende Aufgabe des Gasnetzbetreibers im Rahmen der Gasnetzgebietstransformationspläne angesehen werden. Die Information der Ergebnisse und der möglichen Auswirkungen soll dabei in regelmäßigem Abständen an die Stadtverwaltung erfolgen.

# Maßnahme Förderung alter Öl-Heizungsanlagen

Im Basisjahr ist 24 % der Wärmeendenergie auf die Heizölanlagen zurückzuführen. In Besigheim sind rund 75 % dieser Heizanlagen älter als 15 Jahre alt.

Um den privaten Immobilieneigentümer den Austausch der Öl-Heizungsanlagen möglichst wirtschaftlich und attraktiv zu gestalten, kann ein anreizstiftender Informations- und Förderrahmen durch die Kommunalverwaltung geschaffen werden. Die Hürde der Immobilieneigentümer möglichst frühzeitig die alten Öl-Heizungsanlagen auszutauschen, soll

Projekt-Name: KWP Besigheim



so gering wie möglich gehalten werden. Durch eine Informationskampagne können die Gebäudeeigentümer gezielt angesprochen und über vorhandene Förderprogramme informiert werden. Weiterführend besteht die Möglichkeit, mittels des Aufbaus eines Förderprogramms durch die Kommune für den Austausch von Öl-Heizungsanlagen, zusätzliche finanzielle Anreize zu schaffen, welche eine Investitionsentscheidung erleichtern sollen. Das Programm sollte kumulierbar mit weiteren Förderprogrammen aufgesetzt werden.

## BEW Studie Wärmenetz Weststadt und Löschgauer Feld

Im Zielszenario ist für die Cluster 1, 2, 3, 6, 8 und 10 aufgrund der hohen Wärmedichte und Wärmeliniendichte eine Wärmeversorgung über ein zentrales Wärmenetz berücksichtigt. Als Energiequellen bieten unter anderem Geothermie, Biomasse, grünes Gas und Außenluft ein Potenzial. Die Nutzung nahegelegener Freiflächenpotenziale für Geothermie sind relevante Optionen im Kontext einer potenziellen Versorgung über ein Wärmenetz. Der Wärmebedarf im Basisjahr beträgt für diesen Bereich rund 12 GWh/a (9 % des Gesamtwärmebedarfs der Kommune) und wird aktuell zu 83 % auf Basis fossiler Energieträger gedeckt.

Als erweiterte Maßnahme wird die Durchführung einer Machbarkeitsstudie nach dem Förderprogramm "Bundesförderung effiziente Wärmenetze" (BEW) soll konkret aufzeigen, ob der Ausbau bzw. Neubau eines Wärmenetzes eine konkrete Umsetzungsoption für einen Wärmenetzbetreiber darstellt.

## BEW Studie Wärmenetz Bülzen I (Kalte Nahwärme)

In Besigheim geht aus dem Zielszenario für den Cluster 25 eine zentrale Versorgungsstruktur auf Basis eines Kalten Wärmenetztes hervor. Als Wärmequelle kommt hier die Geothermie in Frage, wofür Freiflächen in unmittelbarer Nähe von dem Cluster identifiziert wurden. Der Wärmebedarf im Basisjahr beträgt für diesen Bereich rund 5 GWh/a (3 % des Gesamtwärmebedarfs der Kommune) und wird aktuell zu 91 % auf Basis fossiler Energieträger gedeckt.

Als erweiterte Maßnahme wird die Durchführung einer Machbarkeitsstudie nach dem Förderprogramm "Bundesförderung effiziente Wärmenetze" (BEW) für die Umsetzung des kalten Nahwärmenetzes vorgeschlagen.

#### BEW Studie Wärmenetz "Westlich der Enz"

Im Zielszenario ist für die Cluster 11, 12 und 13 aufgrund der hohen Wärmedichte und Wärmeliniendichte eine Wärmeversorgung über ein zentrales Wärmenetz vorgesehen. Als Energiequellen bieten unter anderem Flusswasser (Enz), Abwasser aus der lokalen Kläranlage, grünes Gas und Außenluft ein Potenzial. Der Wärmebedarf im Basisjahr beträgt für diesen Bereich rund 46 GWh/a (33 % des Gesamtwärmebedarfs der Kommune) und wird aktuell zu 66 % auf Basis fossiler Energieträger gedeckt.

Projekt-Name: KWP Besigheim



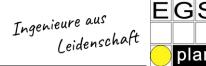
Als erweiterte Maßnahme wird die Durchführung einer Machbarkeitsstudie nach dem Förderprogramm "Bundesförderung effiziente Wärmenetze" (BEW) soll konkret aufzeigen, ob der Ausbau bzw. Neubau eines Wärmenetzes eine konkrete Umsetzungsoption für einen Wärmenetzbetreiber darstellt.

## **BEW Studie Wärmenetz Besigheim-Altstadt**

Für die Besigheim-Altstadt ist im Zielszenario eine Wärmeversorgung durch ein zentrales Wärmenetz vorgesehen. Für die Cluster 15, 16, 17, 18 und 19 bieten als Energiequelle Flusswasser (Neckar), grünes Gas und Außenluft ein Potenzial. Der Wärmebedarf im Basisjahr beträgt für diesen Bereich rund 9 GWh/a (6 % des Gesamtwärmebedarfs der Kommune) und wird aktuell zu 81 % auf Basis fossiler Energieträger gedeckt. Die Stadt Besigheim hat für die Heizzentrale bereits einen Standort in der Robert-Bosch-Str. 1 identifiziert (Stand Feb 2024).

Als erweiterte Maßnahme wird die Durchführung einer Machbarkeitsstudie nach dem Förderprogramm "Bundesförderung effiziente Wärmenetze" (BEW) soll konkret aufzeigen, ob der Ausbau bzw. Neubau eines Wärmenetzes in dem anspruchsvollen Altstadt-Bereich eine konkrete Umsetzungsoption für einen Wärmenetzbetreiber darstellt.

E23365


Projekt-Nr.: Projekt-Name:

KWP Besigheim



# 8 Abbildungsverzeichnis

| Abbildung 1: Ubersicht der Arbeitsphasen einer KWP                                   | 10    |
|--------------------------------------------------------------------------------------|-------|
| Abbildung 2 Baualtersklassen Wohngebäude im Bestand (prozentuale Verteilung)         | 20    |
| Abbildung 3: Hauptnutzungsarten der Cluster                                          | 21    |
| Abbildung 4: Übersichtskarte der Gas- und Wärmenetze                                 | 22    |
| Abbildung 5: Wärmebedarf je Cluster im Basisjahr                                     | 23    |
| Abbildung 6: Wärmedichte je Cluster im Basisjahr                                     | 24    |
| Abbildung 7: Wärmeliniendichte im Basisjahr                                          | 24    |
| Abbildung 8: Endenergiebedarf Wärme nach Nutzungssektoren                            | 25    |
| Abbildung 9: Heatmap-Darstellung der THG-Emissionen 2022 in Besigheim                |       |
| Abbildung 10: Ergebnisse der Eignungsprüfung zur Versorgung durch ein Wärmenetz      | 29    |
| Abbildung 11: Ergebnisse der Eignungsprüfung zur Versorgung durch ein Wasserstoffne  | tz 30 |
| Abbildung 12: Entwicklung des Wärmebedarfs verschiedener Sanierungsszenarien         | 32    |
| Abbildung 13: Szenario Prozesseffizienz - Entwicklung des Wärmebedarfs GHD und Indu  |       |
|                                                                                      |       |
| Abbildung 14: Energiebedarfsentwicklung – Szenario 1                                 |       |
| Abbildung 15: Teilgebiete mit erhöhtem Wärmeeinsparpotenzial                         |       |
| Abbildung 16: Potenzialkarte "Abwasser - Kanal" auf Clusterebene                     |       |
| Abbildung 17: Potenzialkarte "Abwasser – Kläranlage" auf Clusterebene                |       |
| Abbildung 18: Potenzialkarte "Flusswasser" auf Clusterebene                          |       |
| Abbildung 19: Eignungsflächen für das Potenzial "Geothermie – Kollektoren zentral"   |       |
| Abbildung 20: Potenzialkarte "Geothermie – Kollektoren zentral" auf Clusterebene     |       |
| Abbildung 21: Potenzialkarte "Geothermie – Sonden dezentral" auf Clusterebene        |       |
| Abbildung 22: Potenzialkarte "Geothermie – Sonden zentral" auf Clusterebene          |       |
| Abbildung 23: Potenzialkarte "Grundwasser" auf Clusterebene                          |       |
| Abbildung 24: Potenzialkarte "Solarthermie - dezentral" auf Clusterebene             |       |
| Abbildung 25: Eignungsflächen für das Potenzial "Solarthermie - zentral"             |       |
| Abbildung 26: Potenzialkarte "Solarthermie - zentral" auf Clusterebene               |       |
| Abbildung 27: Potenzialkarte "Tiefengeothermie" in 500 m                             |       |
| Abbildung 28: Potenzialkarte "Tiefengeothermie" in 1.000 m                           |       |
| Abbildung 29: Karte der Biomasse Potenzialflächen                                    |       |
| Abbildung 30: Potenzialkarte "Photovoltaik – dezentral" auf Gebäudeebene (Einstufung | nach  |
| Energieatlas BW)                                                                     |       |
| Abbildung 31: Potenzialkarte Freiflächen "Photovoltaik – zentral"                    |       |
| Abbildung 32: "Windkraft"- Potenzial aus Energieatlas BW                             |       |
| Abbildung 33: Wasserkraftpotenzial aus Energieatlas BW                               | 66    |
| Abbildung 34: Übersicht der Einzelpotenziale zur Bedarfsdeckung im Bereich Wärme     |       |
| Abbildung 35: Anteile der Endenergieträger an den Zielszenarien                      | 70    |
| Abbildung 36: Anteile der Versorgungssysteme innerhalb der Zielszenarien             |       |
| Abbildung 37: Energieträger zur Wärmeversorgung im Basis- und Zieljahr               | 73    |
| Abbildung 38: Zielszenario 2040 Energieversorgung der Stadtteile                     | 74    |
| Abbildung 39: Zielszenario 2040 Versorgungssysteme der Cluster                       | 75    |
| Abbildung 40: Zielszenario 2030                                                      | 76    |



E23365

Projekt-Nr.: Projekt-Name: KWP Besigheim

| Abbildung 41: Zielszenario 2030 Versorgungssysteme der Cluster           | 76             |
|--------------------------------------------------------------------------|----------------|
| Abblidding 41. Zielszeriano 2000 Versorgungssysteme der Cluster          |                |
| Abbildung 42: Clusterkarte mit Wärmenetzgebieten aus dem Zielszenario    | 83             |
| Abbildung 43: Kriterienübersicht für die Identifikation der Fokusgebiete | 88             |
| Abbildung 44: Kommunale Fokusgebiete                                     | 89             |
| Abbildung 45: Cluster mit Gasbedarf im Zielszenario                      | 90             |
| Abbildung 46: Beispiel Clustersteckbrief                                 | 92             |
| Abbildung 47: Versorgungssystem der Cluster und die ausgewählten         | Freiflächen im |
| Zielszenario                                                             | 100            |
| Abbildung 48: Zielszenario 2040 Wärmeversorgung im Untersuchungsgebiet   | in Ottmarsheim |
|                                                                          | 103            |
| Abbildung 49: Zielszenario 2040 Wärmeversorgung im Untersuchungsgebiet l | Burgacker106   |

Projekt-Name: KWP Besigheim



## 9 Literaturverzeichnis

- Fisch, N., Mahler, Boris, Nusser, T., Schulze, Ê., Gabriel, J., Fafflok, C., & Hegger, J. (2018). *Effizienzhaus Plus Planungsempfehlungen.* Bonn: Bundesinstitut für Bau-, Stadt- und Raumforschung.
- KEA-BW. (17. Februar 2023). *KEA-BW die Landesenergieagentur*. Von https://www.kea-bw.de/waermewende/wissensportal/klimaschutzgesetz-datenuebermittlung-zur-erstellung-kommunaler-waermeplaene abgerufen
- KEA-BW. (03. März 2023). *KEA-BW Die Landesenergieagentur*. Von https://www.kea-bw.de/waermewende/wissensportal/klimaschutzgesetz-kommunale-waermeplanung abgerufen
- Landesamt für Geologie, R. u. (13. Februar 2023). *LGRBwissen*. Von LGRBwissen: https://lgrbwissen.lgrb-bw.de/geothermie/tiefe-geothermie/tiefe-geothermie-baden-wuerttemberg abgerufen
- Ludwigsburg-Kornwestheim, S. (18. Februar 2023). Stadtwerke Ludwigsburg-Kornwestheim.

  Von

  https://www.swlb.de/de/Privat/Gas-Waerme/Fernwaerme/Versorgungsgebiete1/Versorgungsgebiete/ abgerufen
- Peters, M., Steidle, T., & Böhnisch, H. (2020). *Leitfaden Kommunale Wärmeplanung.* Stuttgart: KEA Klimaschutz und Energieagentur Baden-Württemberg GmbH.
- Thorsten, S., Walberg, D., Gniechwitz, T., & Paare, K. (2022). Studie zum 13. Wohnungsbautag 2022 und Ergebnisse aus aktuellen Untersucheungen. Kiel: Arbeitsgemeinschaft für zeitgemäßes Bauen e.V.

Projekt-Nr.: Projekt-Name: E23365

KWP Besigheim



#### 10 **Anhang**

# 10.1 Liste der Ausschluss- und Eignungsflächen

|                                                                                                                                                                                        |              |                            | Geothermie        |                      |                     | Solarthermie/ PV |                   |                      |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|-------------------|----------------------|---------------------|------------------|-------------------|----------------------|---------------------|
| Kriterium                                                                                                                                                                              | Datenquelle  | Potenziell geeignete Häche | Ausschluss (LuBW) | Einschränkung (LuBW) | Einschränkung (EGS) |                  | Ausschluss (LuBW) | Einschränkung (LuBW) | Einschränkung (EGS) |
| Ackerland in benachteiligten Gebieten                                                                                                                                                  | ALKIS/LfU    | X                          |                   |                      |                     | X                |                   |                      |                     |
| Seitenrandstreifen an Autobahnen und Bahnstrecken                                                                                                                                      | LfU          | X                          |                   |                      |                     | X                |                   |                      |                     |
| Konversionsflächen (wie z.B. stillgelegte Abfalldeponien,<br>Tagebau, Grube und Steinbrüche)                                                                                           | LfU          | х                          |                   |                      |                     | х                |                   |                      |                     |
| Flurstücke nach ALKIS-Nutzung Grünland, Unland,<br>vegetationslose Flächen, Parkplätze, Halden, Brachland                                                                              | ALKIS        | х                          |                   |                      |                     | х                |                   |                      |                     |
| Flächen im räumlichen Zusammenhang mit größeren                                                                                                                                        |              |                            |                   |                      |                     | ×                |                   |                      |                     |
| Gewerbegebieten im Außenbereich                                                                                                                                                        |              |                            |                   |                      |                     | ^                |                   |                      |                     |
| Siedlungsflächen                                                                                                                                                                       | ALKIS        |                            | X                 |                      |                     |                  | X                 |                      |                     |
| Straßen (Autobahnen, Straßen und Wege)                                                                                                                                                 | ALKIS        |                            | X                 |                      |                     |                  | X                 |                      |                     |
| Schienenstrecken                                                                                                                                                                       | ALKIS        |                            | Χ                 |                      |                     |                  | X                 |                      |                     |
| Flughäfen und Flugplätze                                                                                                                                                               | ALKIS        |                            | Х                 |                      |                     |                  | Х                 |                      |                     |
| Gewässer (Fließgewässer und stehende Gewässer)                                                                                                                                         | AI KIS       |                            | X                 |                      |                     |                  | X                 |                      |                     |
| Wald- und Forstflächen                                                                                                                                                                 | ALKIS        |                            | X                 |                      |                     |                  | X                 |                      |                     |
| Nationalpark                                                                                                                                                                           | UIS / LfU    |                            | X                 |                      |                     |                  | X                 |                      |                     |
| Naturschutzgebiet (NSG)                                                                                                                                                                | UIS / LfU    |                            | X                 |                      |                     |                  | X                 |                      |                     |
| Waldschutzgebiet (Bann- und Schonwälder)                                                                                                                                               | LfU          |                            | X                 |                      |                     |                  | X                 |                      |                     |
| Biosphärengebiet -Kernzone                                                                                                                                                             | UIS / LfU    |                            | X                 |                      |                     |                  | X                 |                      |                     |
| Nationale Naturmonumente                                                                                                                                                               |              |                            |                   |                      |                     |                  | X                 |                      |                     |
| Naturdenkmal (END und FND)                                                                                                                                                             | LfU          |                            | X                 |                      |                     |                  | Х                 |                      |                     |
| Geschützte Landschaftsbestandteil                                                                                                                                                      |              |                            |                   |                      |                     |                  |                   |                      |                     |
| Wasser- und Heilquellenschutzgebiete Zone I (bestehend<br>und im Verfahren)<br>Wasser- und Heilquellenschutzgebiete Zone II (bestehend<br>und im Verfahren) und Überschwemmungsgebiete | UIS          |                            | x<br>x            |                      |                     |                  | x                 |                      |                     |
| Überschwemmungsgebiete                                                                                                                                                                 | LfU          |                            | Х                 |                      |                     |                  | Х                 |                      |                     |
| Gewässerrandstreifen                                                                                                                                                                   |              |                            |                   |                      |                     |                  | Х                 |                      |                     |
| Gewässer-Entwicklungskorridore                                                                                                                                                         |              |                            |                   |                      |                     |                  |                   |                      |                     |
| Böden mit hoher Bedeutung                                                                                                                                                              |              |                            |                   |                      |                     |                  | Х                 |                      |                     |
| Landwirtschafliche Böden überdurchschnittlicher Bonität                                                                                                                                |              |                            |                   |                      |                     |                  | Х                 |                      |                     |
| Pflegezonen von Biosphärenreservaten                                                                                                                                                   |              |                            |                   |                      |                     |                  |                   | Х                    |                     |
| Wasserschutzgebietszonen                                                                                                                                                               | LfU          |                            | Χ                 |                      |                     |                  |                   |                      |                     |
| Boden- und Geolehrpfade einschließlich deren Stationen sowie Geotope                                                                                                                   |              |                            |                   |                      |                     |                  |                   |                      |                     |
| Alpenland Zone C                                                                                                                                                                       |              |                            |                   |                      |                     |                  | Х                 |                      |                     |
| Geschützte Biotope, Biotope Landesweit                                                                                                                                                 | LfU          |                            | Х                 |                      |                     |                  | X                 |                      |                     |
| Moorböden                                                                                                                                                                              |              |                            |                   |                      |                     |                  |                   | Х                    |                     |
| Biotopverbund Offenland inkl. Generalwild                                                                                                                                              | LfU          |                            |                   | X                    |                     |                  |                   | X                    |                     |
| Biotopverbund Gewässerlandschaften                                                                                                                                                     | LfU          |                            |                   |                      | X                   |                  |                   | X                    |                     |
| Biotopverbund Wiedervernetzung                                                                                                                                                         | LfU          |                            |                   |                      | X                   |                  |                   | X                    |                     |
| Biotopyerbund Offenland (2012)                                                                                                                                                         | LfU          |                            |                   | X                    |                     |                  |                   | X                    |                     |
| Standorte oder Lebensräume mit besonderer Bedeutung                                                                                                                                    |              |                            |                   |                      |                     |                  |                   |                      |                     |
| (Flora Fauna und Vogelschutzgebiete)                                                                                                                                                   |              |                            |                   |                      |                     |                  |                   | Х                    |                     |
| Vorranggebiete für andere Nutzungen                                                                                                                                                    |              |                            |                   |                      |                     |                  |                   | Χ                    |                     |
| Alpenzone A und B                                                                                                                                                                      |              |                            |                   |                      |                     |                  |                   | X                    |                     |
| FFH-Mähwiesen                                                                                                                                                                          | LfU          |                            |                   | Х                    |                     |                  |                   | Х                    |                     |
| FFH-Gebiet                                                                                                                                                                             | LfU          |                            |                   | Х                    |                     |                  |                   | Х                    |                     |
| Bodendenkmäler                                                                                                                                                                         |              |                            |                   |                      |                     |                  |                   | Χ                    |                     |
| Landschaftsschutzgebiet (LSG)                                                                                                                                                          | LfU          |                            |                   | Х                    |                     |                  |                   | Х                    |                     |
| Naturpark                                                                                                                                                                              | LfU          |                            |                   |                      | X                   |                  |                   |                      | X                   |
| Grünzug                                                                                                                                                                                | Regionalplan |                            | Χ                 |                      |                     |                  |                   | Χ                    |                     |
|                                                                                                                                                                                        |              |                            |                   |                      |                     |                  |                   | Х                    |                     |

Projekt-Name: KWP Besigheim



# 10.2 Emissionsfaktoren in der kommunalen Wärmeplanung

Tabelle 14: Zeitliche Entwicklung der Emissionsfaktoren nach Energieträgern in kg/kWh<sup>11</sup>

|                  | 2020  | 2030  | 2035  | 2040  |
|------------------|-------|-------|-------|-------|
| Abwärme          | 0,040 | 0,038 | 0,037 | 0,036 |
| Strom *          | 0,438 | 0,270 | 0,151 | 0,032 |
| Tiefengeothermie | 0,036 | 0,025 | 0,020 | 0,014 |
| Solarthermie     | 0,025 | 0,013 | 0,013 | 0,013 |
| Biomasse         | 0,022 | 0,022 | 0,022 | 0,022 |
| Grünes Gas *     | 0,048 | 0,045 | 0,044 | 0,043 |
| Heizöl           | 0,311 | 0,311 | 0,311 | 0,311 |
| Erdgas           | 0,233 | 0,233 | 0,233 | 0,233 |

Quelle: Technikkatalog KEA/dena

(\*Hinweis: Diese entsprechen zum Teil nicht den Angaben aus dem Technikkatalog der KEA, sondern aus Berechnungen von EGS-plan.)

<sup>11</sup> Angelehnt an die Emissionsfaktoren des dena-Technikkatalogs für die kommunale Wärmeplanung

\_